- embedding模型有哪些?如何选择合适的embedding模型?
行云流水AI笔记
embedding
embedding模型是一种将数据映射到低维空间的模型,常用于自然语言处理、推荐系统、图像识别等领域。以下是一些常见的embedding模型:Word2Vec:CBOW(ContinuousBag-of-Words):通过上下文预测中心词。Skip-Gram:通过中心词预测上下文。GloVe(GlobalVectorsforWordRepresentation):结合了词频统计和Word2Vec的
- 【重构推荐系统】国产大模型驱动的电商个性化推荐完整实战:架构设计、推理优化与在线部署闭环
观熵
国产大模型部署实战全流程指南重构人工智能Agent智能体落地方案
个人简介作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与Agent架构设计。热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。我叫观熵。不是在控熵,就是在观测熵的流动个人主页:观熵个人邮箱:
[email protected]座右铭:愿科技之光,不止照亮智能,也照亮人心!专栏导航观熵系列专栏导航:AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到
- Python爬虫实战:全方位爬取知乎学习板块问答数据
Python爬虫项目
2025年爬虫实战项目python爬虫学习开发语言scrapy游戏
1.项目背景与爬取目标知乎是中国最大的知识问答社区,聚集了大量高质量的学习资源和经验分享。爬取知乎“学习”板块的问答数据,可以为学习资料整理、舆情分析、推荐系统开发等提供数据支持。本项目目标:爬取“学习”话题下的热门问答列表抓取每个问答的标题、作者、回答内容、点赞数、评论数等详细信息实现动态加载内容的抓取,包含图片和富文本避免被反爬机制限制,保证数据采集稳定结合数据分析,为后续应用打基础2.知乎“
- End-To-End 之于推荐-kuaishou OneRec 笔记
ASKED_2019
RecSys笔记
核心思想OneRec提出了一种统一的生成式推荐系统架构,打破了传统“召回-粗排-精排”级联式推荐流程,使用单一生成模型同时完成召回与排序任务。该系统由快手团队研发,并成功部署于短视频主场景。OnlineA/BTest表现:模型总观看时长平均观看时长OneRec-1B+IPA+1.68%+6.56%一Input处理Userpositiveactionsequence,将短视频的多模态表征,通过量化的
- 计算机毕业设计项目、管理系统、可视化大屏、大数据分析、协同过滤、推荐系统、SSM、SpringBoot、Spring、Mybatis、小程序项目编号1000-1499
lonzgzhouzhou
spring课程设计springboot
大家好,我是DeBug,很高兴你能来阅读!作为一名热爱编程的程序员,我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里,我将会结合实际项目经验,分享编程技巧、最佳实践以及解决问题的方法。无论你是初学者还是有一定经验的程序员,我都希望能够为你提供有价值的内容,帮助你更好地理解编程世界。让我们一起探索编程的乐趣,一起成长,一起学习,谢谢你们的支持与关注!【源码咨询】可接Java程序设计,Bug
- 腾讯混元API调用优化实战:用API网关实现流量控制+缓存+监控
1大模型API的调用挑战在接入腾讯混元大模型API的电商推荐系统项目中,我们面临三个核心挑战:突发流量冲击:促销活动期间API调用量激增300%,触发腾讯云限流策略(429错误)响应延迟波动:文本生成长内容时P99延迟高达2.8秒,影响用户体验异常诊断困难:错误日志分散在多台服务器,故障定位平均耗时47分钟传统解决方案如Nginx限流和Redis缓存存在配置分散、维护成本高等问题。API网关作为流
- Python爬取TMDB电影数据:从登录到数据存储的全过程
Eqwaak00
爬虫Pythonpython开发语言人工智能自动化
在当今数据驱动的时代,获取电影数据对于推荐系统、市场分析和个人项目都至关重要。本文将详细介绍如何使用Python构建一个完整的TMDB(TheMovieDatabase)爬虫,从登录认证到数据解析和存储的全过程。(本来博主也想在CSDN里面上白嫖结果没有一篇文章,然后......)1.项目概述TMDB是一个广受欢迎的电影数据库网站,包含了丰富的电影信息、演员数据和用户评分。我们的目标是构建一个爬虫
- 拷贝漫画网页版网址,Copymanga漫画官方网站入口及APP下载
拷贝漫画是一个专为漫画爱好者打造的在线阅读平台,提供海量漫画资源,涵盖日漫、韩漫、美漫、国漫及轻小说等多种类型,满足不同读者的口味需求。平台界面简洁友好,支持多设备同步阅读(如手机、电脑、平板),并提供高清画质与个性化设置,如亮度调节、字体大小、夜间模式等,确保阅读体验舒适。此外,平台具备智能推荐系统,根据用户浏览历史、收藏记录和偏好推荐漫画,帮助用户发现新内容。社区互动功能也十分活跃,用户可分享
- 60天python训练营打卡day20
tan90�=
python60天打卡python开发语言
学习目标:60天python训练营打卡学习内容:DAY20奇异值SVD分解奇异值分解这个理论,对于你未来无论是做图像处理、信号处理、特征提取、推荐系统等都非常重要,所以需要单独抽出来说一下这个思想。—甚至我在非常多文章中都看到单独用它来做特征提取(伪造的很高大上),学会这个思想并不复杂没学过线代的不必在意,推导可以不掌握,关注输入输出即可。今天这期有点类似于帮助大家形成闭环—考研数学不是白考的知识
- 贝叶斯算法:从概率推断到智能决策的基石
weixin_47233946
算法算法
##引言在人工智能与机器学习的蓬勃发展中,贝叶斯算法以其独特的概率推理方式和动态更新的特性,在垃圾邮件过滤、疾病诊断、推荐系统等关键领域展现出强大的应用价值。本文将从概率论基础出发,深入解析贝叶斯算法的核心思想及其实现方式,揭示这一统计学方法如何演变为现代智能系统的决策利器。---##一、贝叶斯定理:概率之门的钥匙###1.1基本公式表述贝叶斯定理的数学表达式揭示事件间的关联关系:$$P(A|B)
- 用 DeepSeek 打造智能高考志愿填报推荐系统
摆烂大大王
deepseek高考deepseek人工智能数据库AIGC
告别选择困难!基于大模型的精准志愿推荐方案一、背景痛点:高考志愿填报的困境每年高考结束后,数百万考生面临共同难题:如何用有限的分数选择最优的院校和专业?传统方式依赖手册翻阅、经验咨询,存在三大痛点:信息过载:全国近3000所高校、上万个专业组合动态复杂:历年分数线波动、招生计划变化匹配低效:个人兴趣与院校资源难以精准对接二、解决方案:DeepSeek-R1智能推荐系统架构系统核心流程
- Milvus 向量数据库详解与实践指南
JJJ@666
基础知识(人工智能AI)milvus向量数据库图像检索推荐系统
一、Milvus核心介绍1.什么是Milvus?Milvus是一款开源、高性能、可扩展的向量数据库,专门为海量向量数据的存储、索引和检索而设计。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、语义搜索、智能问答、多模态数据处理等AI应用场景。它能够高效处理:嵌入向量(Embeddings)特征向量(FeatureVectors)任何高维数值向量2.核心特性特性说明
- 用Python爬取Goodreads书评与推荐系统数据
Python爬虫项目
python开发语言爬虫php数据分析
一、项目背景与目标Goodreads是全球最大的图书社交网络,用户可以对读过的图书进行评分、撰写书评并获取推荐。本文目标是:自动化爬取Goodreads某本书的热门短评(reviews);抓取Goodreads自动推荐的相似图书列表(relatedbooks);获取每条评论的:评分、评论者昵称、评论内容;获取推荐图书的:书名、评分、作者、链接等信息;使用现代Python异步技术高效爬取并保存为CS
- 从“信息茧房”到“内容生态”:一个算法解救了我的推荐系统(3085. 成为 K 特殊字符串需要删除的最少字符数)
满分观察网友z
算法解构与应用算法数据库
从“信息茧房”到“内容生态”:一个算法解救了我的推荐系统大家好,我是你们的老朋友,一个在代码世界里摸爬滚打多年的开发者。今天想和大家聊聊一个我最近在项目中遇到的“甜蜜的烦恼”,以及我是如何从一个看似不相关的LeetCode算法题中找到灵感,并最终完美解决问题的。我遇到了什么问题?故事得从我们团队正在迭代的一个核心功能——“个性化内容推荐”说起。最初的版本很简单粗暴:基于用户的历史点击、收藏等行为,
- 【Python使用】嘿马推荐系统全知识和项目开发教程第2篇:1.4 案例--基于协同过滤的电影推荐,1.5 推荐系统评估
python后端
教程总体简介:1.1推荐系统简介学习目标1推荐系统概念及产生背景2推荐系统的工作原理及作用3推荐系统和Web项目的区别1.3推荐算法1推荐模型构建流程2最经典的推荐算法:协同过滤推荐算法(CollaborativeFiltering)3相似度计算(SimilarityCalculation)4协同过滤推荐算法代码实现:二根据用户行为数据创建ALS模型并召回商品2.0用户行为数据拆分2.1预处理be
- Atomgit 客户端实战(十六):元服务开发 —— 构建无界交互的全场景服务网络
逻极
鸿蒙harmonyosautomgit交互harmonyos华为缓存typescript开放原子鸿蒙
Atomgit客户端实战(十六):元服务开发——构建无界交互的全场景服务网络在完成AI推荐系统开发后,Atomgit客户端已具备智能内容分发能力。随着鸿蒙生态的不断演进,**元服务(MetaService)**成为构建全场景服务网络的关键技术。它通过统一的服务描述语言,实现跨设备、跨应用的服务无缝调用,真正践行“服务即入口”的设计理念。本篇将深入元服务开发,讲解如何将客户端核心功能转化为可共享、可
- 彻底告别迷茫,探索机器学习的终极指南
wylee
机器学习人工智能
引言:信息洪流中的灯塔,你是否曾迷失方向?在这个AI技术日新月异的时代,机器学习(MachineLearning,ML)无疑是科技领域最耀眼、最具颠覆性的力量之一。从AlphaGo战胜人类围棋冠军,到智能推荐系统精准预测你的喜好,再到自动驾驶技术悄然改变出行方式,机器学习的力量无处不在。然而,对于无数渴望投身机器学习、或者希望在现有领域深耕的开发者而言,这股信息洪流也带来了前所未有的挑战:知识体系
- AI转型指南
HeartException
人工智能学习机器学习
以下是为计算机学生/在职人员撰写《AI转型指南》的目录框架设计,兼顾系统性与实操性,采用模块化结构便于读者按需学习,前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站一、AI行业全景扫描(认知篇)技术图谱解构机器学习/深度学习/强化学习的技术边界NLP/CV/语音/推荐系统等细分赛道的就业热度对比传统计算机技能与AI能力的交叉点(如分布式计算、系统
- 使用 Qdrant 实现高效的向量相似性搜索
antja_
算法人工智能机器学习
Qdrant是一个功能强大的向量相似性搜索引擎,为您提供生产就绪的服务以及方便的API,用于存储、搜索和管理点——带有附加有效载荷的向量。Qdrant专注于支持扩展过滤,以满足复杂的搜索需求。技术背景介绍在现代应用中,向量相似性搜索是处理大规模数据的重要工具。例如,在推荐系统中,我们需要根据用户行为找到相似的产品,在搜索引擎中,我们需要根据查询找到相关的内容。Qdrant提供了一种高效且可扩展的解
- 【推荐系统】多任务学习之ESMM模型
山顶夕景
推荐算法深度学习推荐算法深度学习
学习总结ESMM首创了利用用户行为序列数据在完整样本空间建模,并提出利用学习CTR和CTCVR的辅助任务,迂回学习CVR,避免了传统CVR模型经常遭遇的样本选择偏差和训练数据稀疏的问题,取得了显著的效果。ESMM解决了真实场景中CVR中的SSB和DS问题。CVR(Conversionrate)转化率:衡量CPA广告效果的指标,用户点击广告到成为一个有效的激活(如注册额或者成为付费用户)的转化率,所
- Datawhale 2025年2月组队学习- 推荐系统教程FunRec #Task3
dxnb22
Datawhale学习笔记人工智能推荐算法
第二章基于向量的召回1.item2vec未完待续……2.youtubeDnn3.经典双塔模型
- Python打卡训练营day20-奇异值SVD分解
sak77
python打卡训练营python机器学习奇异值分解SVD
知识点回顾:线性代数概念回顾(可不掌握)奇异值推导(可不掌握)奇异值的应用特征降维:对高维数据减小计算量、可视化数据重构:比如重构信号、重构图像(可以实现有损压缩,k越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD(或其变种如FunkSVD,SVD
- 第11章:Neo4j实际应用案例
理论知识和技术细节固然重要,但真正理解Neo4j的价值在于了解它如何解决实际业务问题。本章将探讨Neo4j在各个领域的实际应用案例,包括社交网络分析、推荐系统、知识图谱以及欺诈检测与安全分析。通过这些案例,读者可以了解如何将前面章节学到的知识应用到实际项目中,以及如何解决特定领域的挑战。11.1社交网络分析社交网络是图数据库最自然的应用场景之一,因为社交关系本质上就是一个图结构。Neo4j在社交网
- Dify文档喂不饱模型?别慌!Embedding 微调就是你的救星!
大模型玩家
embeddingai自然语言处理人工智能语言模型学习程序员
在AI时代,Embedding是NLP任务的基石,直接决定了你的模型是「聪明绝顶」还是「笨拙不堪」。你是否遇到过这些让人头疼的问题:做智能问答时,模型总是答非所问,用户一脸懵圈?做推荐系统时,用户翻遍推荐内容,还是觉得「没一个对味」?做语义搜索时,搜索结果五花八门,相关性差到让人抓狂?这些问题的罪魁祸首,往往就是你的Embedding不够精准!通用Embedding在特定领域常常「水土不服」:在电
- SHAP(夏普利加性解释,Shapley Additive Explanations)
阳光明媚大男孩
人工智能机器学习深度学习
揭秘机器学习模型的“黑盒”:什么是SHAP?在人工智能(AI)时代,机器学习模型被广泛应用于医疗、金融、推荐系统等众多领域。然而,这些模型往往像一个“黑盒”,让人难以理解它们是如何做出预测的。SHAP(夏普利加性解释,ShapleyAdditiveExplanations为我们提供了一把钥匙,帮助揭开模型决策的神秘面纱!这篇科普博文将带你走进SHAP的世界,了解它是什么、如何工作,以及为什么它如此
- Qdrant:从连接到查询的实战指南
Mr_Chenph
AI乱炖向量数据库qdrant1.14.2
Qdrant是近年来非常热门的向量数据库,广泛用于文本搜索、推荐系统、图像相似度匹配等场景。本文将带你从最实用的三个层面入手,快速上手并用好Qdrant的核心能力:✅远程连接配置详解️集合创建参数全面解释查询参数高级用法本例为Qdrant1.14.2(注意!)✅一、远程连接配置详解(QdrantClient)在本地你可以用host和port来连接Qdrant服务,而在生产中,通常使用QdrantC
- Agent 在AI里是什么意思?
薇远镖局
AI人工智能人工智能
Agent的核心特点自主性无需外部指令即可独立运行,根据环境信息调整行为(例如自动驾驶汽车根据路况变道)。感知与反馈通过传感器、数据输入等方式感知环境(如摄像头、文本输入、数据库),并实时更新决策。目标导向围绕明确目标行动(例如推荐系统的目标是最大化用户点击率)。适应性能应对环境变化(如聊天机器人根据用户情绪调整回复)。Agent的常见类型类型特点与例子反应式Agent基于当前环境直接响应(如自动
- 如何使用Python爬虫抓取美团餐厅信息:从数据获取到分析的完整指南
Python爬虫项目
python爬虫开发语言okhttp深度学习
前言随着互联网的发展,线上平台已经成为了我们生活的重要一部分,尤其是在餐饮行业。美团是中国最大的生活服务平台之一,提供了餐饮、外卖、酒店、旅游等多种服务。它的餐厅推荐系统涵盖了众多商户的信息,包括餐厅的评分、评论、菜单等内容。通过对这些数据的抓取与分析,用户可以了解不同餐厅的受欢迎程度、菜品口味,以及顾客的评价等信息,这对餐饮行业的商家和消费者来说都具有非常重要的价值。在本文中,我们将介绍如何使用
- TensorFlow与Pytorch的区别
m0_49517971
pytorch
TensorFlow是一个开源的机器学习库,由Google于2015年发布。它能够进行深度神经网络的训练和推理,具有高效、灵活、跨平台等优点,被广泛应用于图像识别、语音识别、自然语言处理、推荐系统等领域。TensorFlow的基本概念包括:Tensor:Tensor是TensorFlow中的基本数据结构,可以看作是多维数组。TensorFlow中的计算都是基于Tensor进行的。Graph:Gra
- python基于spark的新闻推荐系统数据分析可视化爬虫的设计与实现pycharm毕业设计项目
QQ_188083800
pythonspark数据分析
目录具体实现截图课题项目源码功能介绍可定制设计功能创新点开发流程Scrapy爬虫框架爬虫核心代码展示论文书写大纲详细视频演示源码获取具体实现截图课题项目源码功能介绍基于Python大数据技术进行网络爬虫的设计,框架使用Scrapy.系统设计支持以下技术栈前端开发框架:vue.js数据库mysql版本不限后端语言框架支持:1java(SSM/springboot)-idea/eclipse2.pyt
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&