深度学习(七十二)ssd物体检测



def ssd_anchor_one_layer(img_shape,
                         feat_shape,
                         sizes,
                         ratios,
                         step,
                         offset=0.5,
                         dtype=np.float32):
    # 计算每个default center归一化后的坐标,因为是center,所以要加offset
    y, x = np.mgrid[0:feat_shape[0], 0:feat_shape[1]]
    y = (y.astype(dtype) + offset) * step / img_shape[0]
    x = (x.astype(dtype) + offset) * step / img_shape[1]


    y = np.expand_dims(y, axis=-1)
    x = np.expand_dims(x, axis=-1)

    num_anchors = len(sizes) + len(ratios)
    h = np.zeros((num_anchors, ), dtype=dtype)
    w = np.zeros((num_anchors, ), dtype=dtype)


    #第一种默认的default box的情况,也就是正方形,正方形的边长为sk
    h[0] = sizes[0] / img_shape[0]
    w[0] = sizes[0] / img_shape[1]
    di = 1

    #第二种默认的default box情况,也是正方形,只不过正方形的边长为sqrt(sk * sk+1)
    if len(sizes) > 1:
        h[1] = math.sqrt(sizes[0] * sizes[1]) / img_shape[0]
        w[1] = math.sqrt(sizes[0] * sizes[1]) / img_shape[1]
        di += 1

    #第三种~第六种default box,矩形边长比例为2、0.5,3,1/3的情况,对于conv4、和最后两层没有3、1/3两种default box
    for i, r in enumerate(ratios):
        h[i+di] = sizes[0] / img_shape[0] / math.sqrt(r)
        w[i+di] = sizes[0] / img_shape[1] * math.sqrt(r)
    return y, x, h, w

你可能感兴趣的:(深度学习)