交并比(Intersection-over-Union,IoU),目标检测中使用的一个概念,是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率,即它们的交集与并集的比值。最理想情况是完全重叠,即比值为1。
计算公式:
Python实现代码:
参考:https://blog.csdn.net/qq_30622831/article/details/85144849
# -*-coding: utf-8 -*-
"""
@Project: IOU
@File : IOU.py
@Author : panjq
@E-mail : [email protected]
@Date : 2018-10-14 10:44:06
"""
def calIOU_V1(rec1, rec2):
"""
computing IoU
:param rec1: (y0, x0, y1, x1), which reflects
(top, left, bottom, right)
:param rec2: (y0, x0, y1, x1)
:return: scala value of IoU
"""
# 计算每个矩形的面积
S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
# computing the sum_area
sum_area = S_rec1 + S_rec2
# find the each edge of intersect rectangle
left_line = max(rec1[1], rec2[1])
right_line = min(rec1[3], rec2[3])
top_line = max(rec1[0], rec2[0])
bottom_line = min(rec1[2], rec2[2])
# judge if there is an intersect
if left_line >= right_line or top_line >= bottom_line:
return 0
else:
intersect = (right_line - left_line) * (bottom_line - top_line)
return intersect/(sum_area - intersect)
def calIOU_V2(rec1, rec2):
"""
computing IoU
:param rec1: (y0, x0, y1, x1), which reflects
(top, left, bottom, right)
:param rec2: (y0, x0, y1, x1)
:return: scala value of IoU
"""
# cx1 = rec1[0]
# cy1 = rec1[1]
# cx2 = rec1[2]
# cy2 = rec1[3]
# gx1 = rec2[0]
# gy1 = rec2[1]
# gx2 = rec2[2]
# gy2 = rec2[3]
cx1,cy1,cx2,cy2=rec1
gx1,gy1,gx2,gy2=rec2
# 计算每个矩形的面积
S_rec1 = (cx2 - cx1) * (cy2 - cy1) # C的面积
S_rec2 = (gx2 - gx1) * (gy2 - gy1) # G的面积
# 计算相交矩形
x1 = max(cx1, gx1)
y1 = max(cy1, gy1)
x2 = min(cx2, gx2)
y2 = min(cy2, gy2)
w = max(0, x2 - x1)
h = max(0, y2 - y1)
area = w * h # C∩G的面积
iou = area / (S_rec1 + S_rec2 - area)
return iou
if __name__=='__main__':
rect1 = (661, 27, 679, 47)
# (top, left, bottom, right)
rect2 = (662, 27, 682, 47)
iou1 = calIOU_V1(rect1, rect2)
iou2 = calIOU_V2(rect1, rect2)
print(iou1)
print(iou2)