Spark Scala DataFram join 操作

package com.xh.movies


import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{StringType, StructField, StructType}

/**
  * Created by xxxxx on 3/15/2017.
  */
object DataFrameJoin {

  def main(args: Array[String]): Unit = {

    val sparkConf = new SparkConf().setMaster("local").setAppName("dataframe")
    val spark = SparkSession.builder().config(sparkConf).getOrCreate()
    val sc = spark.sparkContext   // 不同形式风格的sc
    //* 1,"ratings.dat":     UserID::MovieID::Rating::Timestamp   ///For each threat, you should assign ratings of risk impacts for each asset
    //* 2,"users.dat":       UserID::Gender::Age::OccupationID::Zip-code
    val userRDD= sc.textFile("data/medium/users.dat").map(_.split("::")).map(x => (x(0),x(1)))
    val ratingRDD= sc.textFile("data/large/ratings.dat").map(_.split("::")).map(x => (x(0),x(1)))

    //define the struct and type   这部分内容 让人想让不爽 ,麻烦

    val schemaUser  = StructType("UserID::Gender".split("::").map(column => StructField(column,StringType,true)))
    val schemaRating  = StructType("UserID::MovieID".split("::").map(column => StructField(column,StringType,true)))

    val rowUser: RDD[Row] = userRDD.map(line => Row(line._1,line._2))
    val rowRating: RDD[Row] = ratingRDD.map(line => Row(line._1,line._2))

    val userDataFaram = spark.createDataFrame(rowUser,schemaUser)
    val ratingDataFram = spark.createDataFrame(rowRating,schemaRating)

    ratingDataFram.filter(s" movieid = 3578")
      .join(userDataFaram,"userid")
      .select("movieid","gender")
      .groupBy("gender")
      .count()
      .show(10)
    //gender  挺麻烦
//      +------+-----+
//      |gender|count|
//      +------+-----+
//      |     F|  319|
//      |     M|  896|
//      +------+-----+3

    //userDataFaram.registerTempTable()   //已经被遗弃了
    userDataFaram.createOrReplaceTempView("users")
    ratingDataFram.createOrReplaceTempView("ratings")

    val sql = "select count(*) as count ,gender from users u join ratings r on u.userid = r.userid where movieid = 3578  group by gender order by 2"

    spark.sql(sql).show()

    while (true){}
    sc.stop()
  }

}


 
  

Spark Scala DataFram join 操作_第1张图片

 
  
 
 

你可能感兴趣的:(Spark,scala)