量子计算磁共振原型机被激光脉冲原型机淘汰

《科学》杂志最新论文

论文标题:Realization of a scalable Shor algorithm

MIT和奥地利Innsbruck大学的研究者们报告说,他们设计并搭建了一台在离子陷阱中只有5个原子的量子计算机。这台计算机使用激光脉冲来在每一个原子上实行Shor的算法,分解数字15的质因数。这个系统的设计允许通过增加原子和激光来搭建更大型更快速、能够分解更大数字的质因数的量子计算机。

2001年时,量子计算领域的开拓者之一,Chuang,设计了一台基于一个分子的量子计算机,这个分子可以处于叠加态,通过核磁共振来进行操作,分解数字15的质因数。实验结果发表在了《自然》杂志上,这是第一次以实验的方式实现Shor的算法。不过这个系统是无法扩展的:随着加入的原子数量增多,控制这个系统变得越来越难。

Chuang和他的同事们现在终于研究出了一种全新的、可扩展的量子系统,能够高效地分解质因数。一般来说,分解数字15的质因数需要用到12个量子比特,但是他们找到了一种方法使得对量子比特的需求降低到5个,每个量子比特都用一个单一原子来表示。每个原子都能处于叠加态,同时处在两种不同的能量态中。研究者们在其中4个原子上使用激光脉冲来达到“逻辑门”——或者说Shor算法的元素——的效果。计算结果随后由第5个原子来储存、传递、提取、循环利用,由此以并行的方式实行了Shor的算法,用到的量子比特数量大为降低。

 

这支团队通过在离子陷阱中控制这些原子来让量子系统保持稳定。量子陷阱中,他们在每个原子上都移除一个电子,让它们带电,随后通过电场来摆放原子的位置。

  “通过这种方式,我们能够精确地知晓某个原子的位置,”Chuang解释道,“然后我们用同样的方式处理几微米之外的另一个原子——这个距离大约是人类头发宽度的1/100。把一些这样的原子放在一起的话,它们仍然有相互作用,因为它们带有电荷。这种相互作用让我们能够进行逻辑门的操作,而逻辑门的操作带来了实现Shor算法的基础。无论我们把系统做得多大,我们都可以对其中任何一个原子进行逻辑门操作。”

“我们预见到了它未来能拥有直白明了的可扩展性——一旦仪器能够捕获更多的原子、用更多的激光束来控制激光脉冲,”Chuang说道,“我们没有看出有任何物理学的理由阻止它成真。”

你可能感兴趣的:(量子计算磁共振原型机被激光脉冲原型机淘汰)