Spark架构原理-DAGScheduler以及stage划分算法

原文地址:https://blog.csdn.net/zhanglh046/article/details/78485985

Spark架构原理-DAGScheduler以及stage划分算法_第1张图片

一、核心属性

  • TaskScheduler taskScheduler: task调度器。
  • AtomicInteger nextJobId:获取下一个jobId。
  • Int numTotalJobs:job总数。
  • AtomicInteger nextStageId: 下一个stageId。
  • HashMap[Int, HashSet[Int]] jobIdToStageIds:jobId和对应的所有stageId的映射。
  • HashMap[Int, Stage] stageIdToStage: stageId -> Stage映射。
  • HashMap[Int, ShuffleMapStage] shuffleIdToMapStage:shufflleId 到MapStage之间的映射。
  • HashMap[Int, ActiveJob] jobIdToActiveJob:jobId-> ActiveJob之间的映射。
  • HashSet[Stage] waitingStages: 正处于等待的Stages。
  • HashSet[Stage] runningStages:正处于运行阶段的Stages。
  • HashSet[Stage] failedStages:正处于失败阶段的stages。
  • HashSet[ActiveJob] activeJobs:激活的job。
  • HashMap[Int, IndexedSeq[Seq[TaskLocation]]]cacheLocs: 每一个被缓存的RDD分区的位置,即RDD 的id -> 所有分区id(每一个分区的位置信息集合)。
  • ScheduledExecutorService messageScheduler:后台单线程调度器。
  • DAGSchedulerEventProcessLoop eventProcessLoop:一个缓存时间的队列,可以根据入队的事件,执行对应的方法。

二、重要方法

1、提交作业的处理

DAGScheduler在初始化的时候,就会启动eventProcessLoop,DAGSchedulerEventProcessLoop继承了EventLoop,启动之后,会启动一个后台线程,从队列BlockingQueue里取各种event,然后根据取出的event,进行不同的处理。

class DAGScheduler {
    //……
    eventProcessLoop.start()
}

abstract class EventLoop[E](name: String){
 
    def start(): Unit = {
      if (stopped.get) {
        throw new IllegalStateException(name + " has already been stopped")
      }
      onStart()
      eventThread.start()
    }

    private val eventThread = new Thread(name) {
      // 设置成后台守护线程
      setDaemon(true)
      override def run(): Unit = {
        try {
          while (!stopped.get) {
            val event = eventQueue.take()
            try {
              onReceive(event)
            } catch {
              case NonFatal(e) =>
                try {
                  onError(e)
                } catch {
                  case NonFatal(e) => logError("Unexpected error in " + name, e)
                }
            }
          }
        } catch {
          case ie: InterruptedException => // exit even if eventQueue is not empty
          case NonFatal(e) => logError("Unexpected error in " + name, e)
        }
      }
    
    }
}

private[scheduler] class DAGSchedulerEventProcessLoop(dagScheduler: DAGScheduler)
  extends EventLoop[DAGSchedulerEvent]("dag-scheduler-event-loop") with Logging {

  private[this] val timer = dagScheduler.metricsSource.messageProcessingTimer

  // 重载EventLoop的方法
  override def onReceive(event: DAGSchedulerEvent): Unit = {
    val timerContext = timer.time()
    try {
      doOnReceive(event)
    } finally {
      timerContext.stop()
    }
  }

  private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
    // 如果是JobSubmitted,则调用handleJobSubmitted方法
    case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
      dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
    // 如果是MapStageSubmitted,则调用handleMapStageSubmitted方法
    case MapStageSubmitted(jobId, dependency, callSite, listener, properties) =>
      dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties)
    // 如果是StageCancelled,则调用handleStageCancellation方法
    case StageCancelled(stageId) =>
      dagScheduler.handleStageCancellation(stageId)
    // 如果是JobCancelled,则调用handleJobCancellation方法
    case JobCancelled(jobId) =>
      dagScheduler.handleJobCancellation(jobId)
    // 如果是JobGroupCancelled,则调用handleJobGroupCancelled方法
    case JobGroupCancelled(groupId) =>
      dagScheduler.handleJobGroupCancelled(groupId)
    // 如果是AllJobsCancelled,则调用doCancelAllJobs方法
    case AllJobsCancelled =>
      dagScheduler.doCancelAllJobs()
    // 如果是ExecutorAdded,则调用handleExecutorAdded方法
    case ExecutorAdded(execId, host) =>
      dagScheduler.handleExecutorAdded(execId, host)
    // 如果是ExecutorLost,则调用handleExecutorLost方法
    case ExecutorLost(execId, reason) =>
      val filesLost = reason match {
        case SlaveLost(_, true) => true
        case _ => false
      }
      dagScheduler.handleExecutorLost(execId, filesLost)
    // 如果是BeginEvent,则调用handleBeginEvent方法
    case BeginEvent(task, taskInfo) =>
      dagScheduler.handleBeginEvent(task, taskInfo)
    // 如果是GettingResultEvent,则调用handleGetTaskResult方法
    case GettingResultEvent(taskInfo) =>
      dagScheduler.handleGetTaskResult(taskInfo)
    // 如果是CompletionEvent,则调用handleTaskCompletion方法
    case completion: CompletionEvent =>
      dagScheduler.handleTaskCompletion(completion)
    // 如果是TaskSetFailed,则调用handleTaskSetFailed方法
    case TaskSetFailed(taskSet, reason, exception) =>
      dagScheduler.handleTaskSetFailed(taskSet, reason, exception)
    // 如果是ResubmitFailedStages,则调用resubmitFailedStages方法
    case ResubmitFailedStages =>
      dagScheduler.resubmitFailedStages()
  }
}

private[scheduler] def handleJobSubmitted(jobId: Int,
    finalRDD: RDD[_],
    func: (TaskContext, Iterator[_]) => _,
    partitions: Array[Int],
    callSite: CallSite,
    listener: JobListener,
    properties: Properties) {
  // 声明一个final的stage,ResultStage
  var finalStage: ResultStage = null
  try {
    // 创建ResultStage这个final stage,如果是hadoopRDD,但是HDFS文件已经被删除,就会抛出异常
    finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
  } catch {
    case e: Exception =>
      logWarning("Creating new stage failed due to exception - job: " + jobId, e)
      listener.jobFailed(e)
      return
  }
  // 然后根据jobId,finalStage等信息创建一个Active Job
  val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
  // 清除缓存的RDD对应的分区的位置信息
  clearCacheLocs()
  logInfo("Got job %s (%s) with %d output partitions".format(
    job.jobId, callSite.shortForm, partitions.length))
  logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
  logInfo("Parents of final stage: " + finalStage.parents)
  logInfo("Missing parents: " + getMissingParentStages(finalStage))

  val jobSubmissionTime = clock.getTimeMillis()
  //  把新创建的job放到jobId->ActiveJob映射集合中
  jobIdToActiveJob(jobId) = job
  // acitve job集合添加这个job
  activeJobs += job
  // finalStage设置这个active job
  finalStage.setActiveJob(job)
  // 根据jobId取出对应的stageId列表
  val stageIds = jobIdToStageIds(jobId).toArray
  // 取出对应的Stage信息
  val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
  listenerBus.post(
    SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
  // 提交Stage
  submitStage(finalStage)
}

2、stage的划分过程

Spark架构原理-DAGScheduler以及stage划分算法_第2张图片

  1. 首先对finalRDD 调用creatResultStage方法,通过getOrCreateParentStages获取所有的parent stage列表作为parent stage,然后还需要创建自己本身的ResultStage,比如先创建上游的stage1 和 stage2,然后再创建自己stage3
  2. getOrCreateParentStages会调用 getShuffleDependencies 获得 G 所有直接宽依赖A和F,然后对A和F调用
  3. 对A调用getOrCreateShuffleMapStage, shuffleIdToMapStage 中获取判断为None, 对 A 调用 getMissingAncestorShuffleDependencies, 返回为空,因为它已经是最上游的RDD了,再调用createShuffleMapStage,由于A已经没有parent stage了,所以直接创建stage1 返回了
  4. 对F调用getOrCreateShuffleMapStage,shuffleIdToMapStage 中获取判断为None, 对 F 调用getMissingAncestorShuffleDependencies, 返回为空,因为其上游全是窄依赖,所以返回为空,然后对F调用createShuffleMapStage,直接创建stage2返回了
  5. 把 List(stage1,stage2) 作为 stage3 的 parents stages 创建 stage3

2.1 创建ResultStage

private def createResultStage(
    rdd: RDD[_],
    func: (TaskContext, Iterator[_]) => _,
    partitions: Array[Int],
    jobId: Int,
    callSite: CallSite): ResultStage = {
  // 根据jobId获取或者创建该RDD的parent stage
  val parents = getOrCreateParentStages(rdd, jobId)
  // 产生下一个stage id
  val id = nextStageId.getAndIncrement()
  // 根据final RDD往后推计算出来的所有stage作为parent stage,然后将parent stage列表创建
  // Result Stage,并且创建最后的stage
  val stage = new ResultStage(id, rdd, func, partitions, parents, jobId, callSite)
  // 把这个stage放入DAGScheduler维护的映射列表中
  stageIdToStage(id) = stage
  // 更新jobId->stageId的映射
  updateJobIdStageIdMaps(jobId, stage)
  // 返回ResultStage
  stage
}

2.2 创建或者获取ShuffleMapStage,将所有宽依赖划分出来的stage直接作为parent stages

// 将所有宽依赖划分出来的stage直接作为parent stages
private def getOrCreateParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = {
  // 遍历final RDD中直接获取的宽依赖,然后递归创建ShuffleMapStage
  // 并且将所有上游或者祖先的stage全部返回,以供创建ResultStage
  getShuffleDependencies(rdd).map { shuffleDep =>
    getOrCreateShuffleMapStage(shuffleDep, firstJobId)
  }.toList
}

2.3 获取宽依赖的集合

private[scheduler] def getShuffleDependencies(
    rdd: RDD[_]): HashSet[ShuffleDependency[_, _, _]] = {
  // 用于存放宽依赖的集合
  val parents = new HashSet[ShuffleDependency[_, _, _]]
  // 存放已经访问过的RDD集合
  val visited = new HashSet[RDD[_]]
  // 存放处于等待访问状态的RDD,最后被放入的最先出栈
  val waitingForVisit = new Stack[RDD[_]]
  // 初始RDD的先放入等待的栈中
  waitingForVisit.push(rdd)
  // 只要等待访问的栈不为空
  while (waitingForVisit.nonEmpty) {
    // 就弹出第一个RDD
    val toVisit = waitingForVisit.pop()
    // 只要这个RDD还没有被访问过
    if (!visited(toVisit)) {
      // 添加到访问过的rdd集合中
      visited += toVisit
      // 获取这个RDD的依赖列表,然后遍历依赖
      toVisit.dependencies.foreach {
        // 如果是宽依赖,则添加该依赖到宽依赖的集合
        case shuffleDep: ShuffleDependency[_, _, _] =>
          parents += shuffleDep
        // 窄依赖的话直接放到等待队列,等待下一次被弹出,继续遍历
        case dependency =>
          waitingForVisit.push(dependency.rdd)
      }
    }
  }
  parents
}

2.4 获取或者创建ShuffleMapStage

private def getOrCreateShuffleMapStage(
    shuffleDep: ShuffleDependency[_, _, _],
    firstJobId: Int): ShuffleMapStage = {
  // 看是否存在该shuffleId
  shuffleIdToMapStage.get(shuffleDep.shuffleId) match {
    // 如果存在直接返回对应的ShuffleMapStage
    case Some(stage) =>
      stage
    // 否则创建ShuffleMapStage
    case None =>
      // 为final RDD的所有直接宽依赖查找上游或者祖先还有哪一些宽依赖,并且根据栈里的顺序
      // 创建stage
      getMissingAncestorShuffleDependencies(shuffleDep.rdd).foreach { dep =>
        // 如果不存在这个shuffleId,则创建
        if (!shuffleIdToMapStage.contains(dep.shuffleId)) {
          createShuffleMapStage(dep, firstJobId)
        }
      }
      // 如果final RDD的所有直接宽依赖都没有上游或者祖先的宽依赖,则直接创建stage
      createShuffleMapStage(shuffleDep, firstJobId)
  }
}

2.5 当finalRDD 的直接宽依赖的上游或者祖先还存在宽依赖,我们需要全部查找出来

private def getMissingAncestorShuffleDependencies(
    rdd: RDD[_]): Stack[ShuffleDependency[_, _, _]] = {
  // 声明一个ancestor的栈数据结构存放宽依赖
  val ancestors = new Stack[ShuffleDependency[_, _, _]]
  // 存放应访问过的RDD
  val visited = new HashSet[RDD[_]]
  // 处于等待访问的RDD栈
  val waitingForVisit = new Stack[RDD[_]]
  waitingForVisit.push(rdd)
  while (waitingForVisit.nonEmpty) {
    // 弹出这个RDD
    val toVisit = waitingForVisit.pop()
    // 如果还没被访问过
    if (!visited(toVisit)) {
      // 添加到访问过的RDD集合
      visited += toVisit
      // 根据RDD获取宽依赖集合
      getShuffleDependencies(toVisit).foreach { shuffleDep =>
        // 查看该shuffleId是否已经存在
        if (!shuffleIdToMapStage.contains(shuffleDep.shuffleId)) {
          // 如果不包含则放入ancestor堆栈
          ancestors.push(shuffleDep)
          // 并且该RDD放入等待访问列表,如果继续有宽依赖,则继续放入ancestor中
          waitingForVisit.push(shuffleDep.rdd)
        } // 否则依赖和他的祖先已经注册了
      }
    }
  }
  ancestors
}

 3、 提交Stage

生成finalStage的同时建立起所有stage依赖关系,然后通过finalStage生成一个作业实例,最后提交调度阶段

private def submitStage(stage: Stage) {
  // 获取该stage对应的jobId
  val jobId = activeJobForStage(stage)
  // 检查该jobId是否有效
  if (jobId.isDefined) {
    logDebug("submitStage(" + stage + ")")
    // 如果stage既不处于等待阶段也不处于运行节点,而且还不是失败的stage即该stage还没有开始处理
    if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
      // 获取stage还没有提交的parent stage
      val missing = getMissingParentStages(stage).sortBy(_.id)
      logDebug("missing: " + missing)
      // 如果不存在没有提交的parent stage,则直接把该stage进行提交
      if (missing.isEmpty) {
        logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
        submitMissingTasks(stage, jobId.get)
      } else {
        // 如果存在没有提交的parent stage,则把该stage加入到等待运行的stage列表中,同时递归调用submitStage方法
        // 直到找到开始的调度阶段
        for (parent <- missing) {
          submitStage(parent)
        }
        // 然后该stage放入到等待stage列表中
        waitingStages += stage
      }
    }
  } else {
    abortStage(stage, "No active job for stage " + stage.id, None)
  }
}

4、获取stage还没有提交的parent stage

private def getMissingParentStages(stage: Stage): List[Stage] = {
  // 存在parent stage的stage
  val missing = new HashSet[Stage]
  // 访问过的RDD集合
  val visited = new HashSet[RDD[_]]
  // 处于等待访问状态的RDD的栈
  val waitingForVisit = new Stack[RDD[_]]
  def visit(rdd: RDD[_]) {
    // 如果指定RDD还没有被访问过
    if (!visited(rdd)) {
      // 添加到访问过的RDD集合中
      visited += rdd
      // RDD是否有没有被缓存的分区
      val rddHasUncachedPartitions = getCacheLocs(rdd).contains(Nil)
      // 如果有为被缓存的分区
      if (rddHasUncachedPartitions) {
        // 遍历该RDD的依赖
        for (dep <- rdd.dependencies) {
          dep match {
            // 如果是宽依赖
            case shufDep: ShuffleDependency[_, _, _] =>
              // 创建ShuffleMapStage
              val mapStage = getOrCreateShuffleMapStage(shufDep, stage.firstJobId)
              // 如果该宽依赖还有未被提交的stage,则添加该stage到missing中
              if (!mapStage.isAvailable) {
                missing += mapStage
              }
            // 如果是窄依赖,则直接放入访问等待栈
            case narrowDep: NarrowDependency[_] =>
              waitingForVisit.push(narrowDep.rdd)
          }
        }
      }
    }
  }
  waitingForVisit.push(stage.rdd)
  while (waitingForVisit.nonEmpty) {
    visit(waitingForVisit.pop())
  }
  // 返回parent stage列表
  missing.toList
}

5、提交任务

private def submitMissingTasks(stage: Stage, jobId: Int) {
  logDebug("submitMissingTasks(" + stage + ")")
  // 将正在添加的分区集合里的信息清空
  stage.pendingPartitions.clear()

  // 标志出将要计算的分区的索引,即还没有被计算的分区
  val partitionsToCompute: Seq[Int] = stage.findMissingPartitions()

  val properties = jobIdToActiveJob(jobId).properties

  // 将该stage添加到正在运行的stage
  runningStages += stage

  stage match {
    case s: ShuffleMapStage =>
      outputCommitCoordinator.stageStart(stage = s.id, maxPartitionId = s.numPartitions - 1)
    case s: ResultStage =>
      outputCommitCoordinator.stageStart(
        stage = s.id, maxPartitionId = s.rdd.partitions.length - 1)
  }
  // 获取映射
  //每一个分区创建一个task,给每一个task计算最佳的位置,然后生成映射
  val taskIdToLocations: Map[Int, Seq[TaskLocation]] = try {
    stage match {
      case s: ShuffleMapStage =>
        partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap
      case s: ResultStage =>
        partitionsToCompute.map { id =>
          val p = s.partitions(id)
          (id, getPreferredLocs(stage.rdd, p))
        }.toMap
    }
  } catch {
    case NonFatal(e) =>
      stage.makeNewStageAttempt(partitionsToCompute.size)
      listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))
      abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
      runningStages -= stage
      return
  }
  // 为stage创建新的尝试
  stage.makeNewStageAttempt(partitionsToCompute.size, taskIdToLocations.values.toSeq)
  listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))

  // 我们可能需要保持在stage里的task以避免序列化多次
  // 广播task的二进制,用于分发task到executors,注意我们广播序列化RDD和每一个task的副本,我们将要反序列化
  // 这既意味着task会获取不同的RDD副本
  var taskBinary: Broadcast[Array[Byte]] = null
  try {
    // 对于ShuffleMapTask,序列化和广播(rdd,shuffleDep)
    // 对于ResultTask,序列化和广播(rdd,func)
    val taskBinaryBytes: Array[Byte] = stage match {
      case stage: ShuffleMapStage =>
        JavaUtils.bufferToArray(
          closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef))
      case stage: ResultStage =>
        JavaUtils.bufferToArray(closureSerializer.serialize((stage.rdd, stage.func): AnyRef))
    }
    // 广播task的二进制数据
    taskBinary = sc.broadcast(taskBinaryBytes)
  } catch {
    // In the case of a failure during serialization, abort the stage.
    case e: NotSerializableException =>
      abortStage(stage, "Task not serializable: " + e.toString, Some(e))
      runningStages -= stage

      // Abort execution
      return
    case NonFatal(e) =>
      abortStage(stage, s"Task serialization failed: $e\n${Utils.exceptionString(e)}", Some(e))
      runningStages -= stage
      return
  }
  // 开始构建task
  val tasks: Seq[Task[_]] = try {
    stage match {
      case stage: ShuffleMapStage =>
        partitionsToCompute.map { id =>
          // 获取task所在的location
          val locs = taskIdToLocations(id)
          // 获取对应的partition
          val part = stage.rdd.partitions(id)
          // 创建ShuffleMapTask
          new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
            taskBinary, part, locs, stage.latestInfo.taskMetrics, properties, Option(jobId),
            Option(sc.applicationId), sc.applicationAttemptId)
        }

      case stage: ResultStage =>
        partitionsToCompute.map { id =>
          // 获取分区
          val p: Int = stage.partitions(id)
          val part = stage.rdd.partitions(p)
          // 获取task所在的location
          val locs = taskIdToLocations(id)
          // 创建ResultTask
          new ResultTask(stage.id, stage.latestInfo.attemptId,
            taskBinary, part, locs, id, properties, stage.latestInfo.taskMetrics,
            Option(jobId), Option(sc.applicationId), sc.applicationAttemptId)
        }
    }
  } catch {
    case NonFatal(e) =>
      abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
      runningStages -= stage
      return
  }

  if (tasks.size > 0) {
    logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
    // 将task里对应的分区的id将入到pendingPartitions
    stage.pendingPartitions ++= tasks.map(_.partitionId)
    logDebug("New pending partitions: " + stage.pendingPartitions)
    // 将stage对应的task集合封装成TaskSet,调用TaskScheduler的submitTasks开始提交任务
    taskScheduler.submitTasks(new TaskSet(
      tasks.toArray, stage.id, stage.latestInfo.attemptId, jobId, properties))
    stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
  } else {
    // 如果stage不存在任务标记,则表示stage已经调度完成
    markStageAsFinished(stage, None)

    val debugString = stage match {
      case stage: ShuffleMapStage =>
        s"Stage ${stage} is actually done; " +
          s"(available: ${stage.isAvailable}," +
          s"available outputs: ${stage.numAvailableOutputs}," +
          s"partitions: ${stage.numPartitions})"
      case stage : ResultStage =>
        s"Stage ${stage} is actually done; (partitions: ${stage.numPartitions})"
    }
    logDebug(debugString)
    //提交该Stage的正在等在的Child Stages
    submitWaitingChildStages(stage)
  }
}

6、handleTaskCompletion处理任务完成

private[scheduler] def handleTaskCompletion(event: CompletionEvent) {
  // 根据CompletionEvent获取task信息以及stageId
  val task = event.task
  val taskId = event.taskInfo.id
  val stageId = task.stageId
  val taskType = Utils.getFormattedClassName(task)

  outputCommitCoordinator.taskCompleted(
    stageId,
    task.partitionId,
    event.taskInfo.attemptNumber, // this is a taskattempt number
    event.reason)

  // Reconstructtask metrics. Note: this may be null if the task has failed.
  val taskMetrics: TaskMetrics =
    if (event.accumUpdates.nonEmpty) {
      try {
        TaskMetrics.fromAccumulators(event.accumUpdates)
      } catch {
        case NonFatal(e) =>
          logError(s"Error when attempting to reconstruct metrics for task $taskId", e)
          null
      }
    } else {
      null
    }
  // 向ListenerBus上广播CompletionEvent的事件
  listenerBus.post(SparkListenerTaskEnd(
     stageId, task.stageAttemptId, taskType, event.reason, event.taskInfo, taskMetrics))

  // 如果当前stage已经被取消,则直接返回
  if (!stageIdToStage.contains(task.stageId)) {
    // Skip allthe actions if the stage has been cancelled.
    return
  }

  val stage = stageIdToStage(task.stageId)
  event.reason match {
    // 如果处理task成功
    case Success =>
      // 从stage的pendingPartitions移除当前task对应的partitionId
      stage.pendingPartitions -= task.partitionId
      task match {
        // 如果是ResultTask
        case rt: ResultTask[_, _] =>
          val resultStage = stage.asInstanceOf[ResultStage]
          resultStage.activeJob match {
            // 如果ResultStage对应的job还存在
            case Some(job) =>
              // 判断该stage上如果还有分区未完成
              if (!job.finished(rt.outputId)) {
                // 更新accumulator
                updateAccumulators(event)
                // 将该stage标记为完成,因为这是最后一个stage,所以只要stage完成了,表示job已经完成
                job.finished(rt.outputId) = true
                job.numFinished += 1
                // 如果整个job已经完成
                if (job.numFinished == job.numPartitions) {
                  // 标记该stage已经完成,然后从runningStages中移除
                  markStageAsFinished(resultStage)
                  // 清理job的状态和stage
                  cleanupStateForJobAndIndependentStages(job)
                  // 向ListenerBus上广播JobSucceeded的事件
                  listenerBus.post(
                    SparkListenerJobEnd(job.jobId, clock.getTimeMillis(), JobSucceeded))
                }
                // 触发JobWaiter的taskSucceeded方法
                try {
                  job.listener.taskSucceeded(rt.outputId, event.result)
                } catch {
                  case e: Exception =>
                    // TODO: Perhaps we want to mark the resultStage asfailed?
                    job.listener.jobFailed(new SparkDriverExecutionException(e))
                }
              }
            // 如果ResultStage对应的job已经完成
            case None =>
              logInfo("Ignoring result from " + rt + " because its job has finished")
          }
        // 如果是ShuffleMapTask
        case smt: ShuffleMapTask =>
          // 获取ShuffleMapStage
          val shuffleStage = stage.asInstanceOf[ShuffleMapStage]
          // 更新累加器
          updateAccumulators(event)
          // 获取map状态和executorId
          val status = event.result.asInstanceOf[MapStatus]
          val execId = status.location.executorId
          logDebug("ShuffleMapTask finished on " + execId)
          if (failedEpoch.contains(execId) && smt.epoch <= failedEpoch(execId)) {
            logInfo(s"Ignoring possibly bogus $smt completion from executor $execId")
          } else {
            shuffleStage.addOutputLoc(smt.partitionId, status)
          }
          // 如果runningStages还包括该ShuffleMapStage,
          // 但是ShuffleMapStage所有分区已经完成计算,表示该stage已经完成
          if (runningStages.contains(shuffleStage) && shuffleStage.pendingPartitions.isEmpty) {
            // 标记shuffleStage已经完成
            markStageAsFinished(shuffleStage)
            logInfo("looking for newly runnable stages")
            logInfo("running: " + runningStages)
            logInfo("waiting: " + waitingStages)
            logInfo("failed: " + failedStages)

            mapOutputTracker.registerMapOutputs(
              shuffleStage.shuffleDep.shuffleId,
              shuffleStage.outputLocInMapOutputTrackerFormat(),
              changeEpoch= true)
            // 清理缓存的分区对应location信息
            clearCacheLocs()
            // 如果有task失败,我们重新提交shuffleStage
            if (!shuffleStage.isAvailable) {
              submitStage(shuffleStage)
            } else {
              // 标记所有job的map stage已经完成
              if (shuffleStage.mapStageJobs.nonEmpty) {
                val stats = mapOutputTracker.getStatistics(shuffleStage.shuffleDep)
                for (job <- shuffleStage.mapStageJobs) {
                  markMapStageJobAsFinished(job, stats)
                }
              }
              //提交该Stage的正在等在的Child Stages
              submitWaitingChildStages(shuffleStage)
            }
          }
      }
    // 如果是重新提交,则把task对应的分区重新添加到stage的pendingPartitions
    case Resubmitted =>
      logInfo("Resubmitted " + task + ", so marking it as still running")
      stage.pendingPartitions += task.partitionId
    // 如果获取失败
    case FetchFailed(bmAddress, shuffleId, mapId, reduceId, failureMessage) =>
      // 获取对应失败的stage
      val failedStage = stageIdToStage(task.stageId)
      // 获取shuffleId对应的MapStage
      val mapStage = shuffleIdToMapStage(shuffleId)

      if (failedStage.latestInfo.attemptId != task.stageAttemptId) {
        logInfo(s"Ignoring fetch failure from $task as it's from $failedStage attempt" +
          s" ${task.stageAttemptId} and there is a more recentattempt for that stage " +
          s"(attemptID ${failedStage.latestInfo.attemptId}) running")
      } else {
        // 若果runningStages包含failedStage
        if (runningStages.contains(failedStage)) {
          logInfo(s"Marking $failedStage (${failedStage.name}) as failed " +
            s"due toa fetch failure from $mapStage (${mapStage.name})")
          markStageAsFinished(failedStage, Some(failureMessage))
        } else {
          logDebug(s"Received fetch failure from $task, but its from $failedStage which is no " +
            s"longerrunning")
        }

        if (disallowStageRetryForTest) {
          abortStage(failedStage, "Fetch failure will notretry stage due to testing config",
            None)
        } else if (failedStage.failedOnFetchAndShouldAbort(task.stageAttemptId)) {
          abortStage(failedStage, s"$failedStage (${failedStage.name}) " +
            s"hasfailed the maximum allowable number of " +
            s"times: ${Stage.MAX_CONSECUTIVE_FETCH_FAILURES}. " +
            s"Mostrecent failure reason: ${failureMessage}", None)
        } else {
          if (failedStages.isEmpty) {
            // Don'tschedule an event to resubmit failed stages if failed isn't empty, because
            // in that case the eventwill already have been scheduled.
            // TODO: Cancel running tasks in the stage
            logInfo(s"Resubmitting $mapStage (${mapStage.name}) and " +
              s"$failedStage (${failedStage.name}) due to fetch failure")
            messageScheduler.schedule(new Runnable {
              override def run(): Unit = eventProcessLoop.post(ResubmitFailedStages)
            }, DAGScheduler.RESUBMIT_TIMEOUT, TimeUnit.MILLISECONDS)
          }
          failedStages += failedStage
          failedStages += mapStage
        }
        // Mark themap whose fetch failed as broken in the map stage
        if (mapId != -1) {
          mapStage.removeOutputLoc(mapId, bmAddress)
          mapOutputTracker.unregisterMapOutput(shuffleId, mapId, bmAddress)
        }

        // TODO: mark the executor as failed only if there were lots of fetchfailures on it
        if (bmAddress != null) {
          handleExecutorLost(bmAddress.executorId, filesLost = true, Some(task.epoch))
        }
      }

    case commitDenied: TaskCommitDenied =>
      // Do nothinghere, left up to the TaskScheduler to decide how to handle denied commits

    case exceptionFailure: ExceptionFailure=>
      // Tasks failedwith exceptions might still have accumulator updates.
      updateAccumulators(event)

    case TaskResultLost =>
      // Do nothinghere; the TaskScheduler handles these failures and resubmits the task.

    case _: ExecutorLostFailure | TaskKilled | UnknownReason =>
      //Unrecognized failure - also do nothing. If the task fails repeatedly, theTaskScheduler
      // will abort the job.
  }
}

7、handleStageCancellation 取消stage

private[scheduler] def handleStageCancellation(stageId: Int) {
  // 获取该stage,如果存在,贼取消job
  stageIdToStage.get(stageId) match {
    case Some(stage) =>
      val jobsThatUseStage: Array[Int] = stage.jobIds.toArray
      jobsThatUseStage.foreach { jobId =>
        handleJobCancellation(jobId, s"because Stage $stageId was cancelled")
      }
    case None =>
      logInfo("No active jobs to kill for Stage " + stageId)
  }
}

8、handleJobCancellation 取消job

private[scheduler] def handleJobCancellation(jobId: Int, reason: String = "") {
  // 如果没有注册的job,取消了什么都不用做
  if (!jobIdToStageIds.contains(jobId)) {
    logDebug("Trying to cancel unregistered job " + jobId)
  } else {
    failJobAndIndependentStages(
      jobIdToActiveJob(jobId), "Job %d cancelled %s".format(jobId, reason))
  }
}

 

private def failJobAndIndependentStages(
    job: ActiveJob,
    failureReason: String,
    exception: Option[Throwable] = None): Unit = {
  val error = new SparkException(failureReason, exception.getOrElse(null))
  var ableToCancelStages = true

  val shouldInterruptThread=
    if (job.properties == null) false
    else job.properties.getProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false").toBoolean

  // Cancel allindependent, running stages.
  // 根据job取出所有的stage id
  val stages = jobIdToStageIds(job.jobId)
  if (stages.isEmpty) {
    logError("No stages registered for job " + job.jobId)
  }
  stages.foreach { stageId =>
    val jobsForStage: Option[HashSet[Int]] = stageIdToStage.get(stageId).map(_.jobIds)
    if (jobsForStage.isEmpty || !jobsForStage.get.contains(job.jobId)) {
      logError(
        "Job %dnot registered for stage %d even though that stage was registered for thejob"
          .format(job.jobId, stageId))
    } else if (jobsForStage.get.size == 1) {
      // 如果找不到该stage则抛出错误
      if (!stageIdToStage.contains(stageId)) {
        logError(s"Missing Stage for stage with id $stageId")
      } else {
       // 调用taskScheduler取消task,并且标记stage已经完成
        val stage = stageIdToStage(stageId)
        if (runningStages.contains(stage)) {
          try { // cancelTasks will fail if a SchedulerBackend does not implementkillTask
            taskScheduler.cancelTasks(stageId, shouldInterruptThread)
            markStageAsFinished(stage, Some(failureReason))
          } catch {
            case e: UnsupportedOperationException =>
              logInfo(s"Could not cancel tasks for stage $stageId", e)
            ableToCancelStages= false
          }
        }
      }
    }
  }

  if (ableToCancelStages) {
    // SPARK-15783important to cleanup state first, just for tests where we have some asserts
    // against the state.  Otherwise we have a *little* bit of flakinessin the tests.
    cleanupStateForJobAndIndependentStages(job)
    job.listener.jobFailed(error)
    listenerBus.post(SparkListenerJobEnd(job.jobId, clock.getTimeMillis(), JobFailed(error)))
  }
}

9、doCancelAllJobs 取消所有的job

private[scheduler] def doCancelAllJobs() {
  // Cancel allrunning jobs.
  runningStages.map(_.firstJobId).foreach(handleJobCancellation(_,
    reason = "as part of cancellation of all jobs"))
  activeJobs.clear() // These should already be empty by this point,
  jobIdToActiveJob.clear() // but just in case we lost track of some jobs...
}

10、resubmitFailedStages 重新提交失败的stage

private[scheduler] def resubmitFailedStages() {
  if (failedStages.size > 0) {
    logInfo("Resubmitting failed stages")
    clearCacheLocs()
    val failedStagesCopy = failedStages.toArray
    failedStages.clear()
    for (stage <- failedStagesCopy.sortBy(_.firstJobId)) {
      submitStage(stage)
    }
  }
}

你可能感兴趣的:(大数据/Spark/Spark,Core)