:https://segmentfault.com/blog...
1.前言
前阵子休息天日常在寻找项目里不好的代码,看到了这样的一段代码:
private Result sshSameExec(Session session, String cmd) {
if (log.isDebugEnabled()) {
log.debug("shell command: {}", cmd);
}
UserInfo ui = getUserInfo();
session.setUserInfo(ui);
int exitStatus = 0;
StringBuilder builder = new StringBuilder();
ChannelExec channel;
InputStream in;
InputStream err;
try {
session.connect(connectTimeout);
channel = (ChannelExec) session.openChannel("exec");
channel.setCommand(cmd);
in = channel.getInputStream();
err = channel.getErrStream();
channel.connect();
} catch (Exception e) {
throw new CloudRuntimeException(e);
}
try {
long lastRead = Long.MAX_VALUE;
byte[] tmp = new byte[1024];
while (true) {
while (in.available() > 0 || err.available() > 0) {
int i = 0;
if (in.available() > 0) {
i = in.read(tmp, 0, 1024);
} else if (err.available() > 0) {
i = err.read(tmp, 0, 1024);
}
if (i < 0) {
break;
}
lastRead = System.currentTimeMillis();
builder.append(new String(tmp, 0, i));
}
if (channel.isClosed()) {
if (in.available() > 0) {
continue;
}
exitStatus = channel.getExitStatus();
break;
}
if (System.currentTimeMillis() - lastRead > exeTimeout) {
break;
}
}
} catch (IOException e) {
throw new CloudRuntimeException(e);
} finally {
channel.disconnect();
session.disconnect();
}
if (0 != exitStatus) {
return Result.createByError(ErrorData.builder()
.errorCode(ResultCode.EXECUTE_SSH_FAIL.getCode())
.detail(builder.toString())
.title(ResultCode.EXECUTE_SSH_FAIL.toString())
.build());
} else {
return Result.createBySuccess(builder.toString());
}
}
简单解释一下这段代码——即通过ssh到一台机器上,然后执行一些命令.对命令输出的东西,开了一个循环,每一次读一定的位置,然后以字节流的形式读回来.
这段代码有点丑,于是我闻到了学习的味道.
首先是对两个Stream的消费,很显然,在多核环境下,我们同时也只能够消费其中一个Stream.其次,这代码太挫了,自己定义一个tmp,然后1024、1024这样的去取出来.
在改良之前,我们先来回顾一下JavaIO的接口定义.
2.JavaIO 接口知识回顾
2.1 低级抽象接口:InputStream 和 OutputStream
这里有同学可能问了,为啥叫它低抽象接口呢?因为它离底层太近了,计算机本来就是处理二进制的,而这两个接口正是用来处理二进制数据流的.
先简单看一眼这两个接口:
- InputStream
**
* This abstract class is the superclass of all classes representing
* an input stream of bytes.
*
* Applications that need to define a subclass of InputStream
* must always provide a method that returns the next byte of input.
*
* @author Arthur van Hoff
* @see java.io.BufferedInputStream
* @see java.io.ByteArrayInputStream
* @see java.io.DataInputStream
* @see java.io.FilterInputStream
* @see java.io.InputStream#read()
* @see java.io.OutputStream
* @see java.io.PushbackInputStream
* @since JDK1.0
*/
public abstract class InputStream implements Closeable {.....}
- OutputStream
/**
* This abstract class is the superclass of all classes representing
* an output stream of bytes. An output stream accepts output bytes
* and sends them to some sink.
*
* Applications that need to define a subclass of
* OutputStream
must always provide at least a method
* that writes one byte of output.
*
* @author Arthur van Hoff
* @see java.io.BufferedOutputStream
* @see java.io.ByteArrayOutputStream
* @see java.io.DataOutputStream
* @see java.io.FilterOutputStream
* @see java.io.InputStream
* @see java.io.OutputStream#write(int)
* @since JDK1.0
*/
public abstract class OutputStream implements Closeable, Flushable {...}
我们可以发现,它们都实现了Closeable的接口.因此大家在使用这些原生类时,要注意在结束时调用Close方法哦.
这两个接口的常用实现类有:
- FileInputStream
和FileOutputStream
-
DataInputStream
和DataOutputStream
-
ObjectInputStream
和ObjectOutputStream
2.2 高级抽象接口——Writer和Reader
为啥说它是高级抽象接口呢?我们先来看看它们的注释:
- Writer
/**
* Abstract class for writing to character streams. The only methods that a
* subclass must implement are write(char[], int, int), flush(), and close().
* Most subclasses, however, will override some of the methods defined here in
* order to provide higher efficiency, additional functionality, or both.
*
* @see Writer
* @see BufferedWriter
* @see CharArrayWriter
* @see FilterWriter
* @see OutputStreamWriter
* @see FileWriter
* @see PipedWriter
* @see PrintWriter
* @see StringWriter
* @see Reader
*
* @author Mark Reinhold
* @since JDK1.1
*/
public abstract class Writer implements Appendable, Closeable, Flushable {
- Reader
/**
* Abstract class for reading character streams. The only methods that a
* subclass must implement are read(char[], int, int) and close(). Most
* subclasses, however, will override some of the methods defined here in order
* to provide higher efficiency, additional functionality, or both.
*
*
* @see BufferedReader
* @see LineNumberReader
* @see CharArrayReader
* @see InputStreamReader
* @see FileReader
* @see FilterReader
* @see PushbackReader
* @see PipedReader
* @see StringReader
* @see Writer
*
* @author Mark Reinhold
* @since JDK1.1
*/
public abstract class Reader implements Readable, Closeable {
我们可以看到,这个抽象类是用来面向character
的,也就是字符.字符的抽象等级必然比字节高,因为字符靠近上层,即人类.
2.3 优化输入和输出——Buffered
如果我们直接使用上述实现类去打开一个文件(如FileWriter
、FileReader
、FileInputStream
、FileOutputStream
),对其对象调用read
、write
、readLine
等,每个请求都是由基础OS直接处理的,这会使一个程序效率低得多——因为它们都会引发磁盘访问or网络请求等.
为了减少这种开销,Java 平台实现缓冲 I/O 流。缓冲输入流从被称为缓冲区(buffer)的存储器区域读出数据;仅当缓冲区是空时,本地输入 API 才被调用。同样,缓冲输出流,将数据写入到缓存区,只有当缓冲区已满才调用本机输出 API。
用于包装非缓存流的缓冲流类有4个:BufferedInputStream
和BufferedOutputStream·用于创建字节缓冲字节流,
BufferedReader和
BufferedWriter`用于创建字符缓冲字节流.
3. 着手优化
之前,我们提到了这段代码写得搓的地方:
- 首先是对两个Stream的消费,很显然,在多核环境下,我们同时也只能够消费其中一个Stream.
- 其次,这代码太挫了,自己定义一个tmp,然后1024、1024这样的去取出来.
故此,我们可以考虑对每个Stream都进行包装,支持用线程去消费,其次我们可以用高级抽象分接口去适配Byte,然后去装饰成Buffer.
接下来,我们来看一段ZStack里的工具类ShellUtils
,为了节省篇幅,我们仅仅截出它在IDE里的
概览:
run方法的核心:
public ShellResult run() {
StopWatch watch = new StopWatch();
watch.start();
try {
if (withSudo) {
command = String.format("sudo %s", command);
}
ProcessBuilder pb = new ProcessBuilder(Arrays.asList("/bin/bash", "-c", command));
if (baseDir == null) {
baseDir = System.getProperty("user.home");
}
pb.directory(new File(baseDir));
process = pb.start();
if (!suppressTraceLog && logger.isTraceEnabled()) {
logger.debug(String.format("exec shell command[%s]", command));
}
Writer stdout;
int stdoutLog = stdoutLogStrategy();
if (stdoutLog == LOG_TO_FILE) {
stdout = new BufferedWriter(new FileWriter(stdoutFile));
} else if (stdoutLog == LOG_TO_SCREEN) {
stdout = new BufferedWriter(new OutputStreamWriter(System.out));
} else {
stdout = new StringWriter();
}
Writer stderr;
int stderrLog = stderrLogStrategy();
if (stderrLog == LOG_TO_FILE) {
stderr = new BufferedWriter(new FileWriter(stderrFile));
} else if (stderrLog == LOG_TO_SCREEN) {
stderr = new BufferedWriter(new OutputStreamWriter(System.err));
} else {
stderr = new StringWriter();
}
StreamConsumer stdoutConsumer = new StreamConsumer(process.getInputStream(), new PrintWriter(stdout, true), stdoutLog != LOG_TO_FILE);
StreamConsumer stderrConsumer = new StreamConsumer(process.getErrorStream(), new PrintWriter(stderr, true), stderrLog != LOG_TO_FILE);
stderrConsumer.start();
stdoutConsumer.start();
process.waitFor();
stderrConsumer.join(TimeUnit.SECONDS.toMillis(30));
stdoutConsumer.join(TimeUnit.SECONDS.toMillis(30));
ShellResult ret = new ShellResult();
ret.setCommand(command);
ret.setRetCode(process.exitValue());
if (stderrLog == LOG_TO_STRING) {
ret.setStderr(stderr.toString());
} else if (stderrLog == LOG_TO_FILE) {
stderr.close();
}
if (stdoutLog == LOG_TO_STRING) {
ret.setStdout(stdout.toString());
} else if (stdoutLog == LOG_TO_FILE) {
stdout.close();
}
return ret;
} catch (Exception e) {
StringBuilder sb = new StringBuilder();
sb.append("Shell command failed:\n");
sb.append(command);
throw new ShellException(sb.toString(), e);
} finally {
if (process != null) {
process.destroy();
}
watch.stop();
if (!suppressTraceLog && logger.isTraceEnabled()) {
logger.trace(String.format("shell command[%s] costs %sms to finish", command, watch.getTime()));
}
}
}
}
我们可以看到StreamConsumer
这个类,我们来看一下它的代码:
private static class StreamConsumer extends Thread {
final InputStream in;
final PrintWriter out;
final boolean flush;
StreamConsumer(InputStream in, PrintWriter out, boolean flushEveryWrite) {
this.in = in;
this.out = out;
flush = flushEveryWrite;
}
@Override
public void run() {
BufferedReader br = null;
try {
br = new BufferedReader(new InputStreamReader(in));
String line;
while ( (line = br.readLine()) != null) {
out.println(line);
if (flush) {
out.flush();
}
}
} catch (Exception e) {
logger.warn(e.getMessage(), e);
} finally {
try {
if (br != null) {
br.close();
}
} catch (IOException e) {
logger.warn(e.getMessage(), e);
}
}
}
}
这段代码已经达到了我们的理想状态:线程消费,高级抽象.
3.1 使用Kotlin
3.1.1 Kotlin IO
闲话不多说,先贴代码为敬:
import java.io.InputStream
import java.io.InputStreamReader
class StreamGobbler(private val inputStream: InputStream, private var result: StringBuilder) : Runnable {
override fun run() {
InputStreamReader(inputStream).buffered().use {
it.lines().forEach { r -> result.append(r) }
}
}
}
还是一样熟悉的配方,我们逐行来解读:
- 定义一个类,并且要求构造函数必须传入InputStream和一个StringBuilder.且实现了Runnable接口,这意味着它可以被线程消费.
- 覆写run方法.我们可以看到InputStream被适配成了
InputStreamReader
,这意味着它可以输出字符流了,然后我们使用了Kotlin的接口将其装饰成了Buffer. - 读每一行buffer,并appned到result这个StringBuilder里去.
- 读完就可以告辞了,close.(use会将其关闭)
3.1.2 Kotlin Coroutine
先看一下上面的图,我们都知道内核态线程是由OS调度的,但当一个线程拿到时间片时,却调到了阻塞IO,那么只能等在那边,浪费时间.
而协程则可以解决这个问题,当一个Job
hang住的时候,可以去做别的事情,绕开阻塞.更好的利用时间片.
最后,我们来看一下成品代码:
override fun sshExecWithCoroutine(session: Session, cmd: String): SimpleResult {
val ui = InnerUserInfo()
session.userInfo = ui
val exitStatus: Int
var channel = ChannelExec()
val inputBuilder = StringBuilder()
val errorBuilder = StringBuilder()
try {
session.connect(connectTimeout)
channel = session.openChannel("exec") as ChannelExec
channel.setCommand(cmd)
channel.connect()
val inputStream = StreamGobbler(channel.inputStream, inputBuilder)
val errStream = StreamGobbler(channel.errStream, errorBuilder)
val customJob = GlobalScope.launch {
customStream(inputStream, errStream)
}
while (!customJob.isCompleted) {
// wait job be done
}
exitStatus = channel.exitStatus
} catch (e: IOException) {
throw java.lang.RuntimeException(e)
} finally {
if (channel.isConnected) {
channel.disconnect()
}
if (session.isConnected) {
session.disconnect()
}
}
return if (0 != exitStatus) {
return SimpleResult.createByError(ErrorData.Builder()
.errorCode(ResultCode.EXECUTE_SSH_FAIL.value)
.detail(errorBuilder.toString())
.title(ResultCode.EXECUTE_SSH_FAIL.toString())
.build())
} else {
SimpleResult.createBySuccess(inputBuilder.toString())
}
}
private suspend fun customStream(inputStream: StreamGobbler, errorStream: StreamGobbler) {
val inputDeferred = GlobalScope.async {
inputStream.run()
}
val errorDeferred = GlobalScope.async {
errorStream.run()
}
inputDeferred.join()
errorDeferred.join()
}