Rxjava2源码浅析(二)

上一篇文章:Rxjava2源码浅析(一)
分析了最基础的一套流程,今天呢就略加一些常用的操作吧。

使用范例
上次我们在建立关系的时候就是这样光秃秃的一句话

observable.subscribe(observer);

这在平时使用的时候显然是不够用的,Rxjava的优势是什么?切换线程肯定要算一个啊,所以我们看一下下面这种使用方法。

observable.subscribeOn(Schedulers.newThread())
          .observeOn(AndroidSchedulers.mainThread())
          .subscribe(observer);

这样就完成了在newThread中运行被观察者,在主线程中观察。下面就进入源码时间了~
先从参数开始看起:

public static Scheduler newThread() {
        return RxJavaPlugins.onNewThreadScheduler(NEW_THREAD);
    }

然后又调用了

@NonNull
    public static Scheduler onNewThreadScheduler(@NonNull Scheduler defaultScheduler) {
        Functionsuper Scheduler, ? extends Scheduler> f = onNewThreadHandler;
        if (f == null) {
            return defaultScheduler;
        }
        return apply(f, defaultScheduler);
    }

这里的onNewThreadHandler又是什么呢?

static volatile Functionsuper Scheduler, ? extends Scheduler> onNewThreadHandler;

可以看到是一个类型转换的Funtion<>,暂时不用去管它,因为现在肯定是为空的,所以就会返回我们传进去的defaultScheduler也就是NEW_THREAD,这个是Schedulers内的一个变量

static final Scheduler NEW_THREAD;

这个NEW_THREAD又是什么呢?跟踪它在Schedulers内部的调用。

NEW_THREAD = RxJavaPlugins.initNewThreadScheduler(new Callable() {
            @Override
            public Scheduler call() throws Exception {
                return NewThreadHolder.DEFAULT;
            }
        });

发现了有个static字段内部对它进行了初始化操作。
还是从参数开始分析,发现这是一个Callable对象,和Runable大同小异不过可以返回结果,这里就在call方法中返回了一个Scheduler对象NewThreadHolder.DEFAULT

static final class NewThreadHolder {
        static final Scheduler DEFAULT = new NewThreadScheduler();
    }

这里就将创建线程的任务从Schedulers移到了NewThreadScheduler

static {
        int priority = Math.max(Thread.MIN_PRIORITY,        Math.min(Thread.MAX_PRIORITY,
        Integer.getInteger(KEY_NEWTHREAD_PRIORITY,Thread.NORM_PRIORITY)));
        THREAD_FACTORY = new RxThreadFactory(THREAD_NAME_PREFIX, priority);
 }

private static final RxThreadFactory THREAD_FACTORY;

public NewThreadScheduler() {
        this(THREAD_FACTORY);
}

public NewThreadScheduler(ThreadFactory threadFactory) {
        this.threadFactory = threadFactory;
}

我们看到NewThreadScheduler初始化中还包含着RxThreadFactory的初始化,至于它的作用到现在还不得而知,暂且搁置,回到主方法中。接着从从subscribeon开始分析:

public final Observable subscribeOn(Scheduler scheduler) {
        ObjectHelper.requireNonNull(scheduler, "scheduler is null");
        return RxJavaPlugins.onAssembly(new ObservableSubscribeOn(this, scheduler));
    }

上来第一行还是老样子先进行非空判断,然后第二行这个我们是不是也看着很眼熟呢?没错。。。

public static <T> Observable<T> create(ObservableOnSubscribe<T> source) {
        ObjectHelper.requireNonNull(source, "source is null");
        return RxJavaPlugins.onAssembly(new ObservableCreate<T>(source));
    }

这跟第一个步骤中的create长的简直一模一样。所以重点就来到了

new ObservableSubscribeOn(this, scheduler)

该方法为:

public ObservableSubscribeOn(ObservableSource source, Scheduler scheduler) {
        super(source);
        this.scheduler = scheduler;
    }

暂时没啥好说的。。。先跳过。。。
subscribeon就先搁置一下,
然后看observeron,参数就不分析了,和subscribeon的流程大同小异,唯一不同的就是其中是通过Looper.getMainLooper()来得到主线程的。后面有机会的话也会专门来写一篇文章记录一下自己关于Looper和Handler的线程和消息机制的学习。

@CheckReturnValue
@SchedulerSupport(SchedulerSupport.CUSTOM)
public final Observable observeOn(Scheduler scheduler) {
    return observeOn(scheduler, false, bufferSize());
}

这里的buffersize

public static int bufferSize() {
        return Flowable.bufferSize();
}
 public static int bufferSize() {
        return BUFFER_SIZE;
 }
static final int BUFFER_SIZE;
static {
        BUFFER_SIZE = Math.max(16, Integer.getInteger("rx2.buffer-size", 128));
    }

可以看到这个buffersize就是一个缓冲区的大小,一个int类型的参数,不过和flowable牵扯在了一起,这个flowable也是Rxjava2的新特性–背压,这里先不多讲了,都放到后面的文章来说。主要来看这个observeon

public final Observable observeOn(Scheduler scheduler, boolean delayError, int bufferSize) {
        ObjectHelper.requireNonNull(scheduler, "scheduler is null");
        ObjectHelper.verifyPositive(bufferSize, "bufferSize");
        return RxJavaPlugins.onAssembly(new ObservableObserveOn(this, scheduler, delayError, bufferSize));
}

它的前两行

ObjectHelper.requireNonNull(scheduler, "scheduler is null");
ObjectHelper.verifyPositive(bufferSize, "bufferSize");

都是验证合理性的。第一行出现很多次就不用说了。第二行

public static int verifyPositive(int value, String paramName) {
        if (value <= 0) {
            throw new IllegalArgumentException(paramName + " > 0 required but it was " + value);
        }
        return value;
    }

就是说我们的buffersize一定要是一个正数,这也是合情合理且应该的。
然后就又看到我们的老朋友了RxJavaPlugins.onAssembly。。。

我们前面的分析也有了经验,所以这里会return 里面的参数 new ObservableObserveOn< T >(this, scheduler, delayError, bufferSize)向上转型为一个Observable,之前也分析过,
ObservableObserveOn < T > 中会重写


    @Override
    protected void subscribeActual(Observersuper T> observer) {
        if (scheduler instanceof TrampolineScheduler) {
            source.subscribe(observer);
        } else {
            Scheduler.Worker w = scheduler.createWorker();

            source.subscribe(new ObserveOnObserver(observer, w, delayError, bufferSize));
        }
    }

这里的scheduler.createWorker是AndroidScheduler.MainThread

@Override
public Worker createWorker() {
    return new HandlerWorker(handler);
}

而这个createWork()

@Override
    public Worker createWorker() {
        return new HandlerWorker(handler);
    }

    private static final class HandlerWorker extends Worker {
        private final Handler handler;

        private volatile boolean disposed;

        HandlerWorker(Handler handler) {
            this.handler = handler;
        }

        @Override
        public Disposable schedule(Runnable run, long delay, TimeUnit unit) {
            if (run == null) throw new NullPointerException("run == null");
            if (unit == null) throw new NullPointerException("unit == null");

            if (disposed) {
                return Disposables.disposed();
            }

            run = RxJavaPlugins.onSchedule(run);

            ScheduledRunnable scheduled = new ScheduledRunnable(handler, run);

            Message message = Message.obtain(handler, scheduled);
            message.obj = this; // Used as token for batch disposal of this worker's runnables.

            handler.sendMessageDelayed(message, Math.max(0L, unit.toMillis(delay)));

            // Re-check disposed state for removing in case we were racing a call to dispose().
            if (disposed) {
                handler.removeCallbacks(scheduled);
                return Disposables.disposed();
            }

            return scheduled;
        }

        @Override
        public void dispose() {
            disposed = true;
            handler.removeCallbacksAndMessages(this /* token */);
        }

        @Override
        public boolean isDisposed() {
            return disposed;
        }
    }

在new ObserveOnObserver< T >(observer, w, delayError, bufferSize)中,我们就选两个方法来看一下就可以了

@Override
        public void onSubscribe(Disposable s) {
            if (DisposableHelper.validate(this.s, s)) {
                this.s = s;
                if (s instanceof QueueDisposable) {
                    @SuppressWarnings("unchecked")
                    QueueDisposable qd = (QueueDisposable) s;

                    int m = qd.requestFusion(QueueDisposable.ANY | QueueDisposable.BOUNDARY);

                    if (m == QueueDisposable.SYNC) {
                        sourceMode = m;
                        queue = qd;
                        done = true;
                        actual.onSubscribe(this);
                        schedule();
                        return;
                    }
                    if (m == QueueDisposable.ASYNC) {
                        sourceMode = m;
                        queue = qd;
                        actual.onSubscribe(this);
                        return;
                    }
                }

                queue = new SpscLinkedArrayQueue(bufferSize);

                actual.onSubscribe(this);
            }
        }

        @Override
        public void onNext(T t) {
            if (done) {
                return;
            }

            if (sourceMode != QueueDisposable.ASYNC) {
                queue.offer(t);
            }
            schedule();
        }

其中的schedule方法比较重要

 void schedule() {
            if (getAndIncrement() == 0) {
                worker.schedule(this);
            }
        }

而这个schedule

@NonNull
public Disposable schedule(@NonNull Runnable run) {
        return schedule(run, 0L, TimeUnit.NANOSECONDS);
}

就调用了之前的HandlerScheduler里面的schedule方法

@Override
        public Disposable schedule(Runnable run, long delay, TimeUnit unit) {
            if (run == null) throw new NullPointerException("run == null");
            if (unit == null) throw new NullPointerException("unit == null");

            if (disposed) {
                return Disposables.disposed();
            }

            run = RxJavaPlugins.onSchedule(run);

            ScheduledRunnable scheduled = new ScheduledRunnable(handler, run);

            Message message = Message.obtain(handler, scheduled);
            message.obj = this; // Used as token for batch disposal of this worker's runnables.

            handler.sendMessageDelayed(message, Math.max(0L, unit.toMillis(delay)));

            // Re-check disposed state for removing in case we were racing a call to dispose().
            if (disposed) {
                handler.removeCallbacks(scheduled);
                return Disposables.disposed();
            }

            return scheduled;
        }

其中

run = RxJavaPlugins.onSchedule(run);

ScheduledRunnable scheduled = new ScheduledRunnable(handler, run);

Message message = Message.obtain(handler, scheduled);
message.obj = this; 
// Used as token for batch disposal of this worker's runnables.

handler.sendMessageDelayed(message, Math.max(0L, unit.toMillis(delay)));

就完成了在MainThread中的观察,因为我们的handler就是刚刚new Handler()的时候传入了Looper.getMainLooper()。
至于subscribeon是如何切换线程的。。还没看出来。。明天再说吧。。。

你可能感兴趣的:(Android学习笔记)