- 基于MFC的遥感图像匹配程序设计
HH予
嵌入式驱动工程项目开发mfcc++
基于MFC的遥感图像匹配程序设计下面我将为你设计一个使用MFC实现的遥感图像匹配程序,能够显示图片并在图上标注匹配点位置,支持地面点坐标的输入和输出。程序框架设计1.创建MFC项目使用VisualStudio创建一个MFC应用程序项目选择"单文档"界面勾选"文档/视图体系结构支持"2.主界面设计//在CMainFrame中添加以下成员变量classCMainFrame:publicCFrameWn
- 如何使用YOLOv8对遥感图像中的滑坡-泥石流进行分割 深度学习遥感图像滑坡泥石流分割数据集的训练及应用
计算机C9硕士_算法工程师
YOLO深度学习人工智能
如何使用YOLOv8对遥感图像中的滑坡-泥石流进行分割深度学习遥感图像滑坡泥石流分割数据集的训练及应用文章目录遥感图像滑坡-泥石流分割数据集情况数据集概述类别统计总体统计注意事项✅一、安装CUDA驱动(Linux示例)✅二、安装Anaconda(Linux示例)✅三、创建Python虚拟环境并安装依赖✅四、数据集结构示例(遥感图像滑坡-泥石流分割)✅五、创建data.yaml文件(用于训练)✅六、
- matlab纹理分析,森林遥感图片的纹理分析(MATLAB)☆
沐辉东方
matlab纹理分析
摘要遥感技术不断提高,森林遥感图像所含信息越来越多,仅用光谱信息无法将其区分开,而用纹理特征分析对于在图像的识别起着非常重要的作用,因此遥感影像的纹理分析已经成为一种重要的提高遥感影像分类精度的手段。本文以森林遥感图片为研究对象,学习纹理分析的不同方法,选择合适且简单的方法对森林遥感图像进行纹理分析。首先,针对森林遥感图像的特点并结合现行纹理分析的不同方法,选择适于描述森林纹理的灰度共生矩阵方法,
- YOLOv9改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制
Limiiiing
YOLOv9改进专栏计算机视觉深度学习YOLO目标检测
一、本文介绍本文记录的是基于CAA注意力模块的YOLOv9目标检测改进方法研究。在远程遥感图像或其他大尺度变化的图像中目标检测任务中,为准确提取其长距离上下文信息,需要解决大目标尺度变化和多样上下文信息时的不足的问题。CAA能够有效捕捉长距离依赖,并且参数量和计算量更少。专栏目录:YOLOv9改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改
- 【计算机视觉系列实战教程 (十二)】:图像分割(阈值分割threshold、分水岭算法watershed的使用步骤、洪水填充floodFill算法的使用)
还下着雨ZG
计算机视觉计算机视觉人工智能
1.图像分割概述(1)What(什么是图像分割)将图像划分为不同的子区域,使得同一子区域具有较高的相似性,不同的子区域具有明显的差异性(2)Why(对图像进行分割有什么作用)医学领域:将不同组织分割成不同区域帮助分析病情军事领域:通过对图像的分割,为自动目标识别提供参数,为飞行器或武器的精准导航提供依据遥感领域:通过遥感图像分析城市地貌、作物生长情况。此外,云系分析和天气预报都离不开图像分割交通领
- 轻松发TGRS!遥感结合小目标检测 模型达到94.2%mAP
Ai多利
目标检测人工智能计算机视觉遥感
2025深度学习发论文&模型涨点之——遥感+小目标检测遥感在军事侦察、资源勘探、环境监测等领域的应用日益广泛。然而,如何从海量的遥感数据中准确、高效地检测出小目标,已成为当前遥感图像处理领域的关键挑战之一。小目标在遥感图像中往往具有尺寸微小、背景复杂、对比度低等特点,这使得传统的检测方法难以满足实际应用的需求。近年来,随着深度学习技术的兴起,基于卷积神经网络(CNN)的检测算法为遥感小目标检测带来
- 【前沿 热点 顶会】CVPR 2025和目标分类、检测、分割、重识别有关的论文
平安顺遂事事如意
顶刊顶会论文合集分类数据挖掘人工智能CVPR检测分割重识别
SegEarth-OV:TowardsTraining-FreeOpen-VocabularySegmentationforRemoteSensingImages遥感图像在农业、水资源、军事、救灾等领域发挥着不可替代的作用。像素级解释是遥感影像应用的一个关键方面;但是,一个普遍的限制仍然是需要大量的手动注释。为此,我们尝试将开放词汇语义分割(OVSS)引入遥感环境中。然而,由于遥感图像对低分辨率特
- 制备高光谱与多光谱融合数据集Pavia University (PU) 用于CNMF算法融合教程
Python与遥感
算法人工智能
制备高光谱与多光谱融合数据集PaviaUniversity(PU)用于CNMF算法融合教程本文介绍了如何使用Python对PaviaUniversity的高光谱数据进行处理,实现高光谱与多光谱融合,此技术广泛应用于遥感图像分析,对环境监测、城市规划等领域具有重要意义。制备高光谱与多光谱融合数据集PaviaUniversity(PU)用于CNMF算法融合教程一、融合定义二、制备PU数据集1.融合数据
- 遥感图像(介绍、特点、分类、应用及处理)
码上就位
分类数据挖掘人工智能
什么是遥感图像?遥感图像是通过遥感技术采集的地面或地表对象的影像数据,广泛应用于地理信息科学、环境监测、资源管理等领域。遥感技术通过从航空器、卫星、无人机等平台发射传感器,探测地球表面或大气层的信息,并将这些信息转化为图像数据。根据遥感传感器的类型,遥感图像可以包含不同波段的信息,如可见光、红外线、微波等,这些图像帮助我们了解地球表面和大气层的各种属性和变化。遥感图像的特点1.多源数据遥感图像不仅
- 遥感图像处理笔记之【多模态遥感图像综述】
这可就有点麻烦了
遥感图像图像处理学习人工智能笔记
遥感图像处理学习(9)之【多模态遥感图像综述】前言遥感系列第9篇。遥感图像处理方向的学习者可以参考或者复刻本文初编辑于2024年1月15日本文再编辑于2024年1月17日:附上“对现有工作分类”一节的补充文字说明总结:为什么要做这么冷的课题你知道我要说什么论文标题:FromSingle-toMulti-modalRemoteSensingImageryInterpretation:ASurveya
- 遥感图像处理笔记之【图像融合综述】
这可就有点麻烦了
遥感图像图像处理笔记人工智能深度学习
遥感图像处理学习(10)之【多模态图像融合综述】前言遥感系列第10篇。遥感图像处理方向的学习者可以参考或者复刻本文初编辑于2024年1月16日本文再编辑于2024年1月17日:修改了论文域名地址总结:多模态遥感图像相关的中文综述,真是少的可怜文章标题:以图像为主的多模态感知与多源融合技术发展及应用综述文章地址:
- 【计算机视觉】-CV实战项目-高分辨率遥感图像语义分割:High-Resolution-Remote-Sensing-Semantic-Segmentation
白熊188
计算机视觉计算机视觉人工智能
高分辨率遥感图像语义分割技术解析与实战指南项目背景与意义核心技术解析1.**膨胀预测(DilatedPrediction)**2.**后处理优化**3.**半监督学习:伪标签(PseudoLabeling)**4.**可视化与监控**实战指南:从数据到预测环境配置数据准备数据集推荐数据预处理模型训练模型推理与后处理常见问题与解决方案相关论文与参考总结与展望——基于PyTorch的深度学习实现项目背
- AI图像分割总汇
点云SLAM
算法人工智能深度学习图像分割医学图像分割SOLOv系列注意力机制
AI图像分割模型是计算机视觉中的核心研究方向之一,广泛用于自动驾驶、医学影像、遥感图像分析等领域。下面是对图像分割模型的一些总汇与归类,按任务类型与模型架构演进进行系统整理。图像分割模型总览图像分割可以按任务类别划分为:一、按任务类型分类任务类型描述1.语义分割(SemanticSegmentation)为每个像素赋予一个语义标签(如人、车、背景),不区分实例。2.实例分割(InstanceSeg
- MATLAB算法实战应用案例精讲-【图像处理】图像特征提取(附MATLAB代码实现)
林聪木
图像处理计算机视觉人工智能
目录前言知识储备提取图像文本的Python库1.pytesseract2.EasyOCR3.Keras-OCR4.TrOCR5.docTR算法原理图像的特征图像特征的分类遥感图像分类特征提取(Featureextraction)灰度共生矩阵GLCM兴趣点提取BRIEF算法Harris角点算法Harris和Shi-Tomas算法SIFT/SURF算法SIFT原理SURF原理LBP和HOG特征算子LB
- 第32讲:卫星遥感与深度学习融合 —— 让地球“读懂”算法的语言
Chh0715
深度学习算法人工智能r语言
目录一、讲讲“遥感+深度学习”到底是干啥的?✅能解决什么问题?二、基础原理串讲:深度学习如何“看懂”遥感图?遥感图像数据类型:CNN的基本思路:三、实战案例:用CNN对遥感图像做地类分类所需R包:️步骤一:构建训练集(模拟影像)步骤二:构造CNN模型步骤三:训练模型️四、真实案例推荐(可复现)五、展示输出与结果可视化六、未来探索方向小结:遥感+深度学习是现代地学分析的“神兵利器”下一讲预告:本讲关
- 遥感图像计算机自动分类原理,第30讲:8.1遥感图像自动识别分类
weixin_39624429
遥感图像计算机自动分类原理
遥感是在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。具体地讲是指在高空和外层空间的各种平台上,运用各种传感器获取反映地表特征的各种数据,通过传输、变换和处理,提取有用的信息,实现研究地物空间形状、位置、性质及其与环境的相互关系的一门现代应用技术科学。1858年世界上第一张航空像片获得后,出现的航片判读技术是现代遥感技术的雏形,由于技术上的限制,在整整一个世纪中,一直发展十分缓慢
- 第33讲|遥感大模型在地学分类中的初探与实战
Chh0715
分类数据挖掘人工智能
目录一、什么是“遥感大模型”?二、遥感大模型在地学分类中的优势三、案例:使用SegmentAnythingModel(SAM)进行遥感地物分割1.安装与依赖配置(PyTorch)2.读取遥感图像(可用Sentinel-2伪彩色图)3.SAM模型载入4.用户点击辅助(模拟点击一片水域)5.导出分割结果并叠加可视化四、更多可探索方向五、总结遥感+大模型,会碰撞出怎样的火花?在遥感影像海量涌现的今天,深
- 图像分割综述
my1_1my
深度学习深度学习
1.简述图像分割(ImageSegmentation)是计算机视觉领域中的一项基本任务,旨在将图像划分为多个具有语义或视觉意义的区域。这项任务在医学影像分析、自动驾驶、遥感图像处理、视频监控等领域都有着广泛的应用。随着深度学习技术的发展,尤其是卷积神经网络(CNN)在视觉任务中的突破,图像分割得到了显著的提升。2.图像分割的目标图像分割的目标是将一幅图像分成多个区域或对象,每个区域代表图像中的某个
- 4.1论文阅读
咕噜咕噜开心加油
javascript前端css
一:PhDnet:一种用于遥感图像的新型物理感知去雾网络(Anovelphysic-awaredehazingnetworkforremotesensingimages)论文链接只是粗略读了一下,关于遥感图像去雾,圆形U--net,加入了物理约束作为模型,并提出了MSGConv和SKFusion。二:TransformerswithoutNormalization论文这是大佬出的文章,所以当然要认
- 《FFCA-YOLO》论文学习,面向遥感图像的小目标检测最新方法
张三不嚣张
1024程序员节目标检测人工智能深度学习神经网络YOLO计算机视觉
一、概要论文全称:《FFCA-YOLOforSmallObjectDetectioninRemoteSensingImages》发表期刊:IEEETRANSACTIONSONGEOSCIENCEANDREMOTESENSING.(TGRS)2024论文地址:FFCA-YOLOforSmallObjectDetectioninRemoteSensingImages|IEEEJournals&Maga
- 论文总结【2024.11】IEEE Transactions on Geoscience and Remote Sensing
新手小白勇闯新世界
论文汇总计算机视觉目标跟踪人工智能
IEEETransactionsonGeoscienceandRemoteSensing1、FFCA-YOLOforSmallObjectDetectioninRemoteSensingImages【FFCA-YOLO用于遥感图像中小目标检测】特征表示不足、背景混淆等问题使得遥感中小目标的探测任务变得艰巨。特别是当算法将部署在机上进行实时处理时,这需要在有限的计算资源下对准确性和速度进行广泛的优化
- 揭秘时空大数据:详细介绍、真实应用场景和数据示例解析
陈书予
GIS开发(时空大数据)前端大数据python时序数据库
时空大数据(SpatialBigData)是指利用空间环境和时间环境信息,以及数字技术,从多种来源获取的海量、动态的、多维的数据,对空间环境和时间环境进行实时监测,并基于复杂的数据分析和挖掘,获取有价值的信息。时空大数据示例:1)社会网络数据:Twitter、Facebook、Instagram等社交媒体上的海量数据,可以通过时间、空间、主题等来提取有价值的信息。2)遥感图像数据:通过遥感技术从卫
- 图像识别技术与应用课后总结(20)
一元钱面包
人工智能
图像分割概念图像分割是把图像中不同像素划分到不同类别,预测目标轮廓,属于细粒度分类。比如将图像里不同物体、背景等区分开来,就像把一幅画里的各个元素精准归类。应用场景人像抠图:能精准分离人物和背景,用于图片编辑、影视制作等,比如去除照片背景换背景。医学组织提取:在医学影像(如CT、MRI图像)中分离出不同组织,辅助疾病诊断、手术规划等。遥感图像分析:分析卫星或航空遥感图像时,区分土地、植被、建筑等不
- 图像分割技术的应用
不要不开心了
计算机视觉dashpython
今天的内容为:图像分割技术与应用,以下是内容总结1.图像分割概述图像分割是指预测目标的轮廓,将不同的像素划分到不同的类别,属于非常细粒度的分类任务。其应用场景广泛,包括人像抠图、医学组织提取、遥感图像分析、自动驾驶、材料图像分析等。2.图像分割的前景与背景-物体(Things):可数的前景目标,如行人、车辆等。-事物(Stuff):不可数的背景,如天空、草地、路面等。3.图像分割的三层境界-语义分
- 【Image captioning-RS】论文12 Prior Knowledge-Guided Transformer for Remote Sensing Image Captioning
CV视界
Imagecaptioning学习transformer深度学习人工智能
1.摘要遥感图像(RSI)字幕生成旨在为遥感图像生成有意义且语法正确的句子描述。然而,相比于自然图像字幕,RSI字幕生成面临着由于RSI特性而产生的额外挑战。第一个挑战源于这些图像中存在大量物体。随着物体数量的增加,确定描述的主要焦点变得越来越困难。此外,RSI中的物体通常外观相似,进一步复杂化了准确描述的生成。为克服这些挑战,我们提出了一种基于先验知识的transformer(PKG-Trans
- DeepBranchTracer:一种使用多特征学习进行曲线结构重建的通用方法
数据集
2024-02-02,由刘超、赵婷、郑能干一起提出了一种名为DeepBranchTracer的新型方法,是一种高效、通用的曲线结构重建方法,适用于多种2D和3D图像数据集。通过结合图像特征和几何特征,显著提高了重建的准确性和连续性。一、研究背景曲线结构(curvilinearstructures)是图像中常见的几何元素,广泛应用于医学图像中的神经分支和血管,以及遥感图像中的道路等。从图像中重建这些
- YOLO11改进-模块-引入多尺度差异融合模块MDFM
一勺汤
YOLOv11模型改进系列深度学习人工智能YOLOYOLOv11目标检测模块改进
遥感变化检测(RSCD)专注于识别在不同时间获取的两幅遥感图像之间发生变化的区域。近年来,卷积神经网络(CNN)在具有挑战性的RSCD任务中展现出了良好的效果。然而,这些方法未能有效地融合双时相特征,也未提取出对后续RSCD任务有益的有用信息。此外,它们在特征聚合中没有考虑多层次特征交互,并且忽略了差异特征与双时相特征之间的关系,从而影响了RSCD的结果。为解决上述问题,本文通过孪生卷积网络提取不
- 常用图像增强算法原理及 OpenCV C++ 实现
埃菲尔铁塔_CV算法
opencv计算机视觉人工智能c++算法机器学习
一、引言图像增强是数字图像处理中的一个重要分支,其目的是改善图像的视觉效果,突出图像中的重要信息,或者将图像转换为更适合人或机器分析处理的形式。在实际应用中,图像增强技术广泛应用于医学影像、遥感图像、安防监控等领域。本文将详细介绍常用的图像增强算法原理,并给出基于OpenCVC++库的实现代码。二、图像增强算法分类图像增强算法可以分为空间域增强和频域增强两大类。空间域增强是直接对图像的像素值进行操
- UNet:UNet在自然环境监测中的应用案例_2024-07-24_09-14-11.Tex
chenjj4003
游戏开发2深度学习计算机视觉人工智能性能优化游戏前端javascript
UNet:UNet在自然环境监测中的应用案例UNet模型概述UNet是一种广泛应用于图像分割任务的卷积神经网络模型,由OlafRonneberger、PhilippFischer和ThomasBrox在2015年提出。其设计初衷是为了在生物医学图像分析中进行细胞和组织的精确分割,但因其高效性和准确性,迅速在自然环境监测、遥感图像分析、卫星图像处理等领域找到了应用。架构原理UNet模型采用了一个编码
- 《深度揭秘:生成对抗网络如何重塑遥感图像分析精度》
程序猿阿伟
生成对抗网络人工智能机器学习
在当今数字化时代,遥感图像作为获取地球表面信息的重要数据源,广泛应用于城市规划、农业监测、环境评估等诸多领域。然而,如何从海量的遥感数据中提取高精度的信息,一直是学术界和工业界共同面临的挑战。生成对抗网络(GAN)的出现,为提升人工智能在遥感图像分析中的精度开辟了全新的路径。生成对抗网络:技术基石剖析生成对抗网络由生成器(Generator)和判别器(Discriminator)组成,二者通过对抗
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置