复杂的拉普拉斯逆变换

Laplace Inverse Transformation (LIT)
L ( 1 π t e − a 2 / 4 t ) = e − a s s ,    a > 0 \mathcal{L}(\frac{1}{\sqrt{\pi t}}\text{e}^{-a^2/4t})=\frac{\text{e}^{-a\sqrt{s}}}{\sqrt{s}},~~ a>0 L(πt 1ea2/4t)=s eas ,  a>0
k ⋅ s − 1 / 2 e − 2 s k\cdot s^{-1/2} e^{-2\sqrt{s}} ks1/2e2s
where

The difficulty with this ILT is that there is a branch point singularity at s=0 that a Bromwich contour must avoid. That is, we are tasked with evaluating
∮ C d s   s − 1 / 2 e − 2 s e s t \oint_C ds \: s^{-1/2} e^{-2 \sqrt{s}} e^{s t} Cdss1/2e2s est
where C is the following contour
We will define Argz∈(−π,π], so the branch is the negative real axis. There are 6 pieces to this contour, Ck, k∈{1,2,3,4,5,6}, as follows.

C1 is the contour along the line z∈[c−iR,c+iR] for some large value of R.

C2 is the contour along a circular arc of radius R from the top of C1 to just above the negative real axis.

C3 is the contour along a line just above the negative real axis between [−R,−ϵ] for some small ϵ.

C4 is the contour along a circular arc of radius ϵ about the origin.

C5 is the contour along a line just below the negative real axis between [−ϵ,−R].

C6 is the contour along the circular arc of radius R from just below the negative real axis to the bottom of C1.

We will show that the integral along C2,C4, and C6 vanish in the limits of R→∞ and ϵ→0.

On C2, the real part of the argument of the exponential is
R t cos ⁡ θ − 2 R cos ⁡ θ 2 R t \cos{\theta} - 2 \sqrt{R} \cos{\frac{\theta}{2}} Rtcosθ2R cos2θ
where θ∈[π/2,π). Clearly, cosθ<0 and cosθ2>0, so that the integrand exponentially decays as R→∞ and therefore the integral vanishes along C2.
On C6, we have the same thing, but now θ∈(−π,−π/2]. This means that, due to the evenness of cosine, the integrand exponentially decays again as R→∞ and therefore the integral also vanishes along C6.

On C4, the integral vanishes in the limit as ϵ→0. Thus, we are left with the following by Cauchy’s integral theorem (i.e., no poles inside C):
[ ∫ C 1 + ∫ C 3 + ∫ C 5 ] d s   s − 1 / 2 e − s e s t = 0 \left [ \int_{C_1} + \int_{C_3} + \int_{C_5}\right] ds \: s^{-1/2} e^{-\sqrt{s}} e^{s t} = 0 [C1+C3+C5]dss1/2es est=0

On C3, we parametrize by s = e i π x s=e^{iπx} s=eiπx and the integral along C3 becomes
∫ C 3 d s   s − 1 / 2 e − 2 s e s t = − i e i π ∫ ∞ 0 d x   x − 1 / 2 e − i 2 x e − x t \int_{C_3} ds \: s^{-1/2} e^{-2\sqrt{s}} e^{s t} = -i e^{i \pi} \int_{\infty}^0 dx \:x^{-1/2} e^{-i 2\sqrt{x}} e^{-x t} C3dss1/2e2s est=ieiπ0dxx1/2ei2x ext
On C5, however, we parametrize by s = e − i π x s=e^{−iπx} s=eiπx and the integral along C5 becomes

∫ C 5 d s   s − 1 / 2 e − 2 s e s t = i e − i π ∫ 0 ∞ d x   x − 1 / 2 e i 2 x e − x t \int_{C_5} ds \: s^{-1/2} e^{-2\sqrt{s}} e^{s t} = i e^{-i \pi} \int_0^{\infty} dx \: x ^{-1/2} e^{i 2 \sqrt{x}} e^{-x t} C5dss1/2e2s est=ieiπ0dxx1/2ei2x ext
We may now write
1 i 2 π ∫ c − i ∞ c + i ∞ d s   s − 1 / 2 e − 2 s e s t = 1 π ∫ 0 ∞ d x   x − 1 / 2 cos ⁡ ( 2 x )   e − x t \frac{1}{i 2 \pi} \int_{c-i \infty}^{c+i \infty} ds \: s^{-1/2} e^{-2\sqrt{s}} e^{s t} = \frac{1}{\pi} \int_0^{\infty} dx \: x^{-1/2} \cos{(2 \sqrt{x})}\, e^{-x t}\\ i2π1cic+idss1/2e2s est=π10dxx1/2cos(2x )ext
= 1 π ∫ − ∞ ∞ d u   cos ⁡ ( 2 u )   e − t u 2 ⎵ x = u 2 = \frac{1}{\pi} \underbrace{\int_{-\infty}^{\infty} du \: \cos{(2 u)} \, e^{-t u^2}}_{x=u^2} \\ =π1x=u2 ducos(2u)etu2
= 1 π ℜ [ ∫ − ∞ ∞ d u   e − t u 2 e i 2 u ] = \frac{1}{\pi} \Re{\left [\int_{-\infty}^{\infty} du \: e^{-t u^2} e^{i 2 u} \right ]} \\ =π1[duetu2ei2u]
= e − 1 / t π ℜ [ ∫ − ∞ ∞ d u   e − t ( u − i / t ) 2 ] = \frac{e^{-1/t}}{\pi} \Re{\left [\int_{-\infty}^{\infty} du \: e^{-t (u-i/t)^2} \right ]}\\ =πe1/t[duet(ui/t)2]
= e − 1 / t π π t = \frac{e^{-1/t}}{\pi} \sqrt{\frac{\pi}{t}} =πe1/ttπ

Therefore the ILT is
1 i 2 π ∫ c − i ∞ c + i ∞ d s   s − 1 / 2 e − 2 s e s t = ( π t ) − 1 / 2 e − 1 / t \frac{1}{i 2 \pi} \int_{c-i \infty}^{c+i \infty} ds \: s^{-1/2} e^{-2\sqrt{s}} e^{s t} = (\pi t)^{-1/2} e^{-1/t} i2π1cic+idss1/2e2s est=(πt)1/2e1/t

你可能感兴趣的:(工程数学)