##kmeans 算法的研究
函数的格式为:kmeans(data, K, bestLabels, criteria, attempts, flags)
(1)data: 分类数据,最好是np.float32的数据,每个特征放一列。之所以是np.float32原因是这种数据类型运算速度快,同样的数据下如果是uint型数据将会慢死你。
(2) K: 分类数,opencv2的kmeans分类是需要已知分类数的。
(3) bestLabels:预设的分类标签:没有的话 None
(4) criteria:迭代停止的模式选择,这是一个含有三个元素的元组型数。格式为(type,max_iter,epsilon)
其中,type又有两种选择:
—–cv2.TERM_CRITERIA_EPS :精确度(误差)满足epsilon停止。
—- cv2.TERM_CRITERIA_MAX_ITER:迭代次数超过max_iter停止。
—-cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER,两者合体,任意一个满足结束。
(5)attempts:重复试验kmeans算法次数,将会返回最好的一次结果
(6)flags:初始类中心选择,两种方法
cv2.KMEANS_PP_CENTERS ; cv2.KMEANS_RANDOM_CENTERS
###完整代码
python opencv代码
'''
Extract panel :kmeans聚类
'''
import cv2
import numpy as np
import math
def panelAbstract(srcImage):
# read pic shape
imgHeight,imgWidth = srcImage.shape[:2]
imgHeight = int(imgHeight);imgWidth = int(imgWidth)
# 均值聚类提取前景:二维转一维
imgVec = np.float32(srcImage.reshape((-1,3)))
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,10,1.0)
flags = cv2.KMEANS_RANDOM_CENTERS
ret,label,clusCenter = cv2.kmeans(imgVec,2,None,criteria,10,flags)
clusCenter = np.uint8(clusCenter)
clusResult = clusCenter[label.flatten()]
imgres = clusResult.reshape((srcImage.shape))
imgres = cv2.cvtColor(imgres,cv2.COLOR_BGR2GRAY)
bwThresh = int((np.max(imgres)+np.min(imgres))/2)
_,thresh = cv2.threshold(imgres,bwThresh,255,cv2.THRESH_BINARY_INV)
threshRotate = cv2.merge([thresh,thresh,thresh])
# 确定前景外接矩形
#find contours
imgCnt,contours, hierarchy = cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
minvalx = np.max([imgHeight,imgWidth]);maxvalx = 0
minvaly = np.max([imgHeight,imgWidth]);maxvaly = 0
maxconArea = 0;maxAreaPos = -1
for i in range(len(contours)):
if maxconArea < cv2.contourArea(contours[i]):
maxconArea = cv2.contourArea(contours[i])
maxAreaPos = i
objCont = contours[maxAreaPos]
# 旋转校正前景
rect = cv2.minAreaRect(objCont)
for j in range(len(objCont)):
minvaly = np.min([minvaly,objCont[j][0][0]])
maxvaly = np.max([maxvaly,objCont[j][0][0]])
minvalx = np.min([minvalx,objCont[j][0][1]])
maxvalx = np.max([maxvalx,objCont[j][0][1]])
if rect[2] <=-45:
rotAgl = 90 +rect[2]
else:
rotAgl = rect[2]
if rotAgl == 0:
panelImg = srcImage[minvalx:maxvalx,minvaly:maxvaly,:]
else:
rotCtr = rect[0]
rotCtr = (int(rotCtr[0]),int(rotCtr[1]))
rotMdl = cv2.getRotationMatrix2D(rotCtr,rotAgl,1)
imgHeight,imgWidth = srcImage.shape[:2]
#图像的旋转
dstHeight = math.sqrt(imgWidth *imgWidth + imgHeight*imgHeight)
dstRotimg = cv2.warpAffine(threshRotate,rotMdl,(int(dstHeight),int(dstHeight)))
dstImage = cv2.warpAffine(srcImage,rotMdl,(int(dstHeight),int(dstHeight)))
dstRotimg = cv2.cvtColor(dstRotimg,cv2.COLOR_BGR2GRAY)
_,dstRotBW = cv2.threshold(dstRotimg,127,255,0)
imgCnt,contours, hierarchy = cv2.findContours(dstRotBW,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
maxcntArea = 0;maxAreaPos = -1
for i in range(len(contours)):
if maxcntArea < cv2.contourArea(contours[i]):
maxcntArea = cv2.contourArea(contours[i])
maxAreaPos = i
x,y,w,h = cv2.boundingRect(contours[maxAreaPos])
#提取前景:panel
panelImg = dstImage[int(y):int(y+h),int(x):int(x+w),:]
return panelImg
if __name__=="__main__":
srcImage = cv2.imread('mouse.png')
a=panelAbstract(srcImage)
cv2.imshow('figa',a)
cv2.waitKey(0)
cv2.destroyAllWindows()