HDU 6093 Rikka with Number (2017 Multi-Univ Training Contest 5)

Problem

d ( d2 )进制下的 好数 被定义为:K= (A1A2...Ad)d , 其中 AiAj 0Aid1 ,同时 A10

求区间 [L,R] 中多少数恰好是 d 进制下的好数 ?

Limit

1LR105000

L,R 为十进制数

Idea

d 进制的最大好数值为 (d1)dd1+(d2)dd2++0d0

d 进制的最小好数值为 1dd1+0dd2+2dd3++(d1)d0

故 d-1 进制下的最大好数与 d 进制下的最小好数满足:

(d2)(d1)d2+(d3)(d1)d3++0(d1)0<1dd1+0dd2+2dd3++(d1)d0

即 d 进制的好数区间与 d-1 进制的好数区间不会重叠。

故具体做法为:

STEP 1. 分别处理子问题 [1, L] 和 [1, R] 中有多少满足条件的好数

STEP 2. 二分枚举最大的 d 进制满足 d 的右区间仍 N (N 作为区间的右值 [1, N]) 。

STEP 3. 在二分后,处理 d+1 进制中有多少满足条件的好数,额外添加即可。

STEP 4. 在处理 d+1 进制时,优先将 N 转换为 d+1 进制的数组,dfs 处理最大的 d+1 进制数。利用康托展开计算个数。

Code

import java.io.*;
import java.math.BigInteger;
import java.util.Scanner;

public class HDU_6093 {

    public static void main(String[] args) throws IOException {
        SolverHDU_6093 solver = new SolverHDU_6093();
        solver.run();
    }
}

class SolverHDU_6093 {

    private static final int MOD = 998244353;
    private static final int N = 5000;
    private int t;
    private BigInteger L, R;
    private long[] factorial = new long[N];
    private int[] N2d = new int[N];
    private boolean[] vis = new boolean[N];
    private int[] maxDNum = new int[N];
    private int[] bit = new int[N];

    int lowbit(int x) {
        return x & -x;
    }

    void add(int x) {
        for (int i=x;iint get(int x) {
        int res = 0;
        for (int i=x;i!=0;i-=lowbit(i)) {
            res += bit[i];
        }
        return res;
    }

    void init() {
        factorial[0] = 1;
        for (int i=1;i1] * i % MOD;
        }
    }

    boolean dfs(int idx, int d) {
        if (idx > d)    return true;
        if (vis[ N2d[idx] ] == true) {
            for (int p=N2d[idx];p>=0;p--) {
                if (vis[p] == false) {
                    vis[p] = true;
                    maxDNum[idx] = p;
                    break;
                } else if (p == 0) {
                    return false;
                }
            }
            for (int i=idx+1, p=d-1;i<=d;i++) {
                while (vis[p])  p--;
                maxDNum[i] = p;
                vis[p] = true;
            }
            return true;
        } else {
            maxDNum[idx] = N2d[idx];
            vis[ N2d[idx] ] = true;
            if (dfs(idx+1, d) == false) {
                vis[ N2d[idx] ] = false;
                if (N2d[idx] == 0)  return false;
                for (int p=N2d[idx]-1;p>=0;p--) {
                    if (vis[p] == false) {
                        vis[p] = true;
                        maxDNum[idx] = p;
                        break;
                    } else if (p == 0) {
                        return false;
                    }
                }
                for (int i=idx+1, p=d-1;i<=d;i++) {
                    while (vis[p])  p--;
                    maxDNum[i] = p;
                    vis[p] = true;
                }
                return true;
            } else {
                return true;
            }
        }
    }


    long calcExt(BigInteger N, int d) {
        BigInteger NN = N;
        for (int i=d;i!=0;i--) {
            N2d[i] = (int) NN.mod(BigInteger.valueOf(d)).longValue();
            NN = NN.divide(BigInteger.valueOf(d));
        }
        if (N2d[1] == 0)    return 0;

        for (int i=0;i<=d;i++)  vis[i] = false;
        vis[ N2d[1] ] = true;
        maxDNum[1] = N2d[1];
        if (dfs(2, d) == false) {
            if (N2d[1] - 1 == 0)    return 0;
            vis[ N2d[1] ] = false;
            vis[ N2d[1] - 1 ] = true;
            maxDNum[1] = N2d[1] - 1;
            int p = d-1;
            for (int i=2;i<=d;i++) {
                while (vis[p] == true) p--;
                maxDNum[i] = p;
                vis[p] = true;
            }
        }

        long ans = 0, dig;
        for (int i=1;i<=d;i++)  bit[i] = 0;
        for (int i=d;i!=0;i--) {
            dig = get(maxDNum[i]);
            add(maxDNum[i] + 1);
            if (i == 1) dig--;
            ans = (ans + dig * factorial[d-i]) % MOD;
        }
        return (ans+1) % MOD;
    }

    long calc(BigInteger N) {
        int l = 2, r = 2000, mid, d = 1;
        BigInteger maxNumInD;
        while (l <= r) {
            mid = (l+r) / 2;
            maxNumInD = BigInteger.ZERO;
            for (int j=mid-1;j>=0;j--) {
                maxNumInD = maxNumInD.multiply(BigInteger.valueOf(mid));
                maxNumInD = maxNumInD.add(BigInteger.valueOf(j));
            }
            if (maxNumInD.compareTo(N) <= 0) {
                l = mid + 1;
                d = mid;
            } else {
                r = mid - 1;
            }
        }
        if (d == 1) return 0;
        long ans = 0;
        for (int i=2;i<=d;i++) {
            ans += factorial[i] - factorial[i-1];
            ans %= MOD;
        }
        ans += calcExt(N, d+1);
        ans %= MOD;
        return ans;
    }

    void run() throws IOException {
        init();
        Scanner cin = new Scanner(System.in);
        t = cin.nextInt();
        for (int ica=1;ica<=t;ica++) {
            L = cin.nextBigInteger();
            R = cin.nextBigInteger();

            long left = calc(L.subtract(BigInteger.ONE));
            long right = calc(R);
            System.out.println((right - left + MOD) % MOD);
        }
    }
}

你可能感兴趣的:(HDU,Multi-Univ)