一、动机
分类数据是机器学习中的一项常见任务。假设某些给定的数据点各自属于两个类之一,而目标是确定新数据点将在哪个类中。支持向量机(support vector machine,常简称为SVM)就是在分类与回归分析中分类数据的监督式学习模型。对于支持向量机来说,数据点被视为p维向量,而我们想知道是否可以用(p-1) 维超平面来分开这些点。
给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。
二、算法原理
1、我们考虑以下形式的 点测试集:
其中 是 1 或者 −1,表明点 所属的类。 中每个都是一个 维实向量。我们要求将 的点集 与 的点集分开的 “最大间隔超平面”,使得超平面与最近的点 之间的距离最大化。
任何超平面都可以写作满足下面方程的点集 :
其中(不必是归一化的)是该法向量。参数 决定从原点沿法向量 到超平面的偏移量。
2、硬间隔
如果这些训练数据是线性可分的,可以选择分离两类数据的两个平行超平面,使得它们之间的距离尽可能大。在这两个超平面范围内的区域称为“间隔”,最大间隔超平面是位于它们正中间的超平面。这些超平面可以由方程:
或是
来表示。通过几何不难得到这两个超平面之间的距离是,因此要使两平面间的距离最大,我们需要最小化。同时为了使得样本数据点都在超平面的间隔区以外,我们需要保证对于所有的 满足其中的一个条件:
若
或是 若
这些约束表明每个数据点都必须位于间隔的正确一侧。
这两个式子可以合并写作:
可以用这个式子一起来得到优化问题:
“在 条件下,最小化 ,对于"
这个问题的解 与 决定了我们的分类器。
此几何描述的一个显而易见却重要的结果是,最大间隔超平面完全是由最靠近它的那些 确定的。这些 叫做支持向量。
以下是网上找到的图片,可以说明一些问题。
3、软间隔
为了将SVM扩展到数据线性不可分的情况,我们引入铰链损失函数,
当约束条件 (1) 满足时(也就是如果 位于边距的正确一侧)此函数为零。对于间隔的错误一侧的数据,该函数的值与距间隔的距离成正比。 然后我们希望最小化
其中参数 用来权衡增加间隔大小与确保 位于间隔的正确一侧之间的关系。因此,对于足够小的 值,如果输入数据是可以线性分类的,则软间隔SVM与硬间隔SVM将表现相同,但即使不可线性分类,仍能学习出可行的分类规则。
三、算法求解
计算(软间隔)SVM分类器等同于使下面表达式最小化
如上所述,由于我们关注的是软间隔分类器, 选择足够小的值就能得到线性可分类输入数据的硬间隔分类器。下面会详细介绍将(2)简化为二次规划问题的经典方法。
原型
最小化(2)可以用下面的方式改写为目标函数可微的约束优化问题。
对所有 我们引入变量。注意到 是满足 的最小非负数。
因此,我们可以将优化问题叙述如下
这就叫原型问题。
对偶型
通过求解上述问题的拉格朗日对偶,得到简化的问题
这就叫对偶问题。由于对偶最小化问题是受线性约束的 的二次函数,所以它可以通过二次规划算法高效地解出。 这里,变量 定义为满足
.
此外,当 恰好在间隔的正确一侧时,且当 位于间隔的边界时。因此, 可以写为支持向量的线性组合。 可以通过在间隔的边界上找到一个 并求解
得到偏移量。(注意由于 因而。)
假设我们要学习与变换后数据点 的线性分类规则对应的非线性分类规则。此外,我们有一个满足 的核函数。
我们知道变换空间中的分类向量 满足
其中 可以通过求解优化问题
得到。与前面一样,可以使用二次规划来求解系数。同样,我们可以找到让 的索引,使得 位于变换空间中间隔的边界上,然后求解
最后,可以通过计算下式来分类新点
四 问题描述及数据来源
基于SVM算法进行手写数字识别。
训练数据有402个txt文件,每个文件是由1和0构成的二值图像。每个图像是一个手写数字。测试数据有186个txt文件,格式同训练数据。
五 程序代码
from numpy import * from time import sleep #6-1 def loadDataSet(fileName): dataMat = []; labelMat = [] fr = open(fileName) for line in fr.readlines(): lineArr = line.strip().split('\t') dataMat.append([float(lineArr[0]), float(lineArr[1])]) labelMat.append(float(lineArr[2])) return dataMat,labelMat def selectJrand(i,m): j=i #we want to select any J not equal to i while (j==i): j = int(random.uniform(0,m)) return j def clipAlpha(aj,H,L): if aj > H: aj = H if L > aj: aj = L return aj #6-2 def smoSimple(dataMatIn, classLabels, C, toler, maxIter): dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose() b = 0; m,n = shape(dataMatrix) alphas = mat(zeros((m,1))) iter = 0 while (iter < maxIter): alphaPairsChanged = 0 for i in range(m): fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)): j = selectJrand(i,m) fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b Ej = fXj - float(labelMat[j]) alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy(); if (labelMat[i] != labelMat[j]): L = max(0, alphas[j] - alphas[i]) H = min(C, C + alphas[j] - alphas[i]) else: L = max(0, alphas[j] + alphas[i] - C) H = min(C, alphas[j] + alphas[i]) if L==H: print( "L==H"); continue eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T if eta >= 0: print( "eta>=0"); continue alphas[j] -= labelMat[j]*(Ei - Ej)/eta alphas[j] = clipAlpha(alphas[j],H,L) if (abs(alphas[j] - alphaJold) < 0.00001): print("j not moving enough") ; continue alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j #the update is in the oppostie direction b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T if (0 < alphas[i]) and (C > alphas[i]): b = b1 elif (0 < alphas[j]) and (C > alphas[j]): b = b2 else: b = (b1 + b2)/2.0 alphaPairsChanged += 1 print( "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) if (alphaPairsChanged == 0): iter += 1 else: iter = 0 print( "iteration number: %d" % iter) return b,alphas #6-3 class optStruct: def __init__(self,dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters self.X = dataMatIn self.labelMat = classLabels self.C = C self.tol = toler self.m = shape(dataMatIn)[0] self.alphas = mat(zeros((self.m,1))) self.b = 0 self.eCache = mat(zeros((self.m,2))) #first column is valid flag self.K = mat(zeros((self.m,self.m))) for i in range(self.m): self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup) def calcEk(oS, k): fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b) Ek = fXk - float(oS.labelMat[k]) return Ek def selectJ(i, oS, Ei): #this is the second choice -heurstic, and calcs Ej maxK = -1; maxDeltaE = 0; Ej = 0 oS.eCache[i] = [1,Ei] #set valid #choose the alpha that gives the maximum delta E validEcacheList = nonzero(oS.eCache[:,0].A)[0] if (len(validEcacheList)) > 1: for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E if k == i: continue #don't calc for i, waste of time Ek = calcEk(oS, k) deltaE = abs(Ei - Ek) if (deltaE > maxDeltaE): maxK = k; maxDeltaE = deltaE; Ej = Ek return maxK, Ej else: #in this case (first time around) we don't have any valid eCache values j = selectJrand(i, oS.m) Ej = calcEk(oS, j) return j, Ej def updateEk(oS, k):#after any alpha has changed update the new value in the cache Ek = calcEk(oS, k) oS.eCache[k] = [1,Ek] #6-4 def innerL(i, oS): Ei = calcEk(oS, i) if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)): j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy(); if (oS.labelMat[i] != oS.labelMat[j]): L = max(0, oS.alphas[j] - oS.alphas[i]) H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i]) else: L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C) H = min(oS.C, oS.alphas[j] + oS.alphas[i]) if L==H: print( "L==H"); return 0 eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel if eta >= 0: print( "eta>=0"); return 0 oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta oS.alphas[j] = clipAlpha(oS.alphas[j],H,L) updateEk(oS, j) #added this for the Ecache if (abs(oS.alphas[j] - alphaJold) < 0.00001): print( "j not moving enough"); return 0 oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j updateEk(oS, i) #added this for the Ecache #the update is in the oppostie direction b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j] b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j] if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1 elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2 else: oS.b = (b1 + b2)/2.0 return 1 else: return 0 #6-5 def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #full Platt SMO oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup) iter = 0 entireSet = True; alphaPairsChanged = 0 while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): alphaPairsChanged = 0 if entireSet: #go over all for i in range(oS.m): alphaPairsChanged += innerL(i,oS) print( "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) iter += 1 else:#go over non-bound (railed) alphas nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] for i in nonBoundIs: alphaPairsChanged += innerL(i,oS) print( "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) iter += 1 if entireSet: entireSet = False #toggle entire set loop elif (alphaPairsChanged == 0): entireSet = True print( "iteration number: %d" % iter) return oS.b,oS.alphas #6-6 def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space m,n = shape(X) K = mat(zeros((m,1))) if kTup[0]=='lin': K = X * A.T #linear kernel elif kTup[0]=='rbf': for j in range(m): deltaRow = X[j,:] - A K[j] = deltaRow*deltaRow.T K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab else: raise NameError('Houston We Have a Problem -- \ That Kernel is not recognized') return K def calcWs(alphas,dataArr,classLabels): X = mat(dataArr); labelMat = mat(classLabels).transpose() m,n = shape(X) w = zeros((n,1)) for i in range(m): w += multiply(alphas[i]*labelMat[i],X[i,:].T) return w #6-8 def testRbf(k1=1.3): dataArr,labelArr = loadDataSet('testSetRBF.txt') b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important datMat=mat(dataArr); labelMat = mat(labelArr).transpose() svInd=nonzero(alphas.A>0)[0] sVs=datMat[svInd] #get matrix of only support vectors labelSV = labelMat[svInd]; print( "there are %d Support Vectors" % shape(sVs)[0]) m,n = shape(datMat) errorCount = 0 for i in range(m): kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b if sign(predict)!=sign(labelArr[i]): errorCount += 1 print( "the training error rate is: %f" % (float(errorCount)/m)) dataArr,labelArr = loadDataSet('testSetRBF2.txt') errorCount = 0 datMat=mat(dataArr); labelMat = mat(labelArr).transpose() m,n = shape(datMat) for i in range(m): kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b if sign(predict)!=sign(labelArr[i]): errorCount += 1 print( "the test error rate is: %f" % (float(errorCount)/m)) def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i in range(32): lineStr = fr.readline() for j in range(32): returnVect[0,32*i+j] = int(lineStr[j]) return returnVect #6-9 def loadImages(dirName): from os import listdir hwLabels = [] trainingFileList = listdir(dirName) #load the training set m = len(trainingFileList) trainingMat = zeros((m,1024)) for i in range(m): fileNameStr = trainingFileList[i] fileStr = fileNameStr.split('.')[0] #take off .txt classNumStr = int(fileStr.split('_')[0]) if classNumStr == 9: hwLabels.append(-1) else: hwLabels.append(1) trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr)) return trainingMat, hwLabels def testDigits(kTup=('rbf', 10)): dataArr,labelArr = loadImages('trainingDigits') b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup) datMat=mat(dataArr); labelMat = mat(labelArr).transpose() svInd=nonzero(alphas.A>0)[0] sVs=datMat[svInd] labelSV = labelMat[svInd]; print( "there are %d Support Vectors" % shape(sVs)[0]) m,n = shape(datMat) errorCount = 0 for i in range(m): kernelEval = kernelTrans(sVs,datMat[i,:],kTup) predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b if sign(predict)!=sign(labelArr[i]): errorCount += 1 print( "the training error rate is: %f" % (float(errorCount)/m)) dataArr,labelArr = loadImages('testDigits') errorCount = 0 datMat=mat(dataArr); labelMat = mat(labelArr).transpose() m,n = shape(datMat) for i in range(m): kernelEval = kernelTrans(sVs,datMat[i,:],kTup) predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b if sign(predict)!=sign(labelArr[i]): errorCount += 1 print( "the test error rate is: %f" % (float(errorCount)/m))
六 运行结果
测试数据错误率为1.6%,正确率很高。
比起之前使用KNN算法进行手写识别,SVM算法需要保留的样本少了很多,节省了内存的开销。