Leading and Trailing ——kuangbin带你飞(数论基础)

You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk.

Input
Input starts with an integer T (≤ 1000), denoting the number of test cases.

Each case starts with a line containing two integers: n (2 ≤ n < 231) and k (1 ≤ k ≤ 107).

Output
For each case, print the case number and the three leading digits (most significant) and three trailing digits (least significant). You can assume that the input is given such that nk contains at least six digits.

Sample Input
5

123456 1

123456 2

2 31

2 32

29 8751919

Sample Output
Case 1: 123 456

Case 2: 152 936

Case 3: 214 648

Case 4: 429 296

Case 5: 665 669

题目链接

https://vjudge.net/contest/70017#problem/E

题目大意

求a ^ n的前三位数和后三位数

数据范围

T (≤ 1000)
n (2 ≤ n < 2^31)
k (1 ≤ k ≤ 1e7)

解题思路

数据范围大,快速幂的方法查找后三位

int last(int a,int n){
int ans = 1;
a %= 1000;
while(n){
	if(n % 2) ans =ans * a % 1000;
	n = n / 2;
	a = a * a % 1000;
	}
	return ans;
}

求前三位要用**(double ) fmod (double x,double y)**这一个函数,它的作用是x对y取余,在库函数里。和 % 的取余不一样,% 是对整数取余,余数是整数,但是 这个函数它的余数可以是小数。
例如 fmod(2.00005,1) = 0.00005

要求 a ^ n , 我们可以把它转换成 10 ^ x 这种情况, 这样 x = n * log10(a), ,X可能是一个小数,小数部分的取值范围为 10 ^ 0 < y < 10 ^ 1 ; 由于求的是三位数为保证输出有效三位数,我们需要 + 2 也就是乘以 10^2。

求 a ^ n前三位数模板

ans = (int)pow( 10.0 , 2 + fmod(n*log10(a) , 1) );

解决代码

#include
#include
//快速幂
int last(int a,int n){
int ans = 1;
a %= 1000;
while(n){
	if(n % 2) ans =ans * a % 1000;
	n = n / 2;
	a = a * a % 1000;
	}
	return ans;
}

int main()
{
int t,a,n,cnt = 1;
scanf("%d",&t);
while(t--){
	scanf("%d %d",&a,&n);
	int l,r;
    l=(int)pow( 10.0 , 2 + fmod(n*log10(a) , 1) );   
	while(l > 1000) l /= 10;
	r = last(a,n);
	printf("Case %d: %d %03d\n",cnt++,l,r);
	}
return 0;
}

你可能感兴趣的:(思维,题解,数论,a,^,n前三位数后三位数模板,模板)