You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk.
Input
Input starts with an integer T (≤ 1000), denoting the number of test cases.
Each case starts with a line containing two integers: n (2 ≤ n < 231) and k (1 ≤ k ≤ 107).
Output
For each case, print the case number and the three leading digits (most significant) and three trailing digits (least significant). You can assume that the input is given such that nk contains at least six digits.
Sample Input
5
123456 1
123456 2
2 31
2 32
29 8751919
Sample Output
Case 1: 123 456
Case 2: 152 936
Case 3: 214 648
Case 4: 429 296
Case 5: 665 669
https://vjudge.net/contest/70017#problem/E
求a ^ n的前三位数和后三位数
T (≤ 1000)
n (2 ≤ n < 2^31)
k (1 ≤ k ≤ 1e7)
数据范围大,快速幂的方法查找后三位
int last(int a,int n){
int ans = 1;
a %= 1000;
while(n){
if(n % 2) ans =ans * a % 1000;
n = n / 2;
a = a * a % 1000;
}
return ans;
}
求前三位要用**(double ) fmod (double x,double y)**这一个函数,它的作用是x对y取余,在库函数
例如 fmod(2.00005,1) = 0.00005
要求 a ^ n , 我们可以把它转换成 10 ^ x 这种情况, 这样 x = n * log10(a), ,X可能是一个小数,小数部分的取值范围为 10 ^ 0 < y < 10 ^ 1 ; 由于求的是三位数为保证输出有效三位数,我们需要 + 2 也就是乘以 10^2。
求 a ^ n前三位数模板
ans = (int)pow( 10.0 , 2 + fmod(n*log10(a) , 1) );
#include
#include
//快速幂
int last(int a,int n){
int ans = 1;
a %= 1000;
while(n){
if(n % 2) ans =ans * a % 1000;
n = n / 2;
a = a * a % 1000;
}
return ans;
}
int main()
{
int t,a,n,cnt = 1;
scanf("%d",&t);
while(t--){
scanf("%d %d",&a,&n);
int l,r;
l=(int)pow( 10.0 , 2 + fmod(n*log10(a) , 1) );
while(l > 1000) l /= 10;
r = last(a,n);
printf("Case %d: %d %03d\n",cnt++,l,r);
}
return 0;
}