可持久化Treap——SPOJ ADALIST

  • 题目链接:http://www.spoj.com/problems/ADALIST/

  • 题意:有3种操作,要求能够在第K个位置加入元素,删除第K个位置的元素,输出第K个位置的元素

  • 分析:这道题可以使用vector或者dequeue暴力跑过,还可以用更省时的Treap来做。复习一下可持久化Treap:

    • 插入:在第K位置split,合并三棵Treap
    • 删除:在第K位置split,再split包含第K个元素的Treap,一边一个(即第K个),另一边是剩下的元素,再合并除了第K个元素的Treap外的两个Treap
    • 查询:二叉搜索树直接查询就可以
  • AC代码:

/*************************************************************************
    > File Name: test.cpp
    > Author: Akira 
    > Mail: [email protected] 
 ************************************************************************/

#include
typedef long long LL;
typedef unsigned long long ULL;
typedef long double LD;
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define Sqr(a) ((a)*(a))
using namespace std;

#define MaxN 100001
#define MaxM MaxN*10
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
const int mod = 1E9+7;
const double eps = 1e-6;
#define bug cout<<88888888<
#define debug(x) cout << #x" = " << x << endl;

struct Node
{
    Node *left, *right;
    int val, prio, size;
    Node():left(0),right(0){}
}*root,pool[6*MaxN];
inline int size(Node *n){ return n?n->size:0;}
inline void update_size(Node *n){if (n) n->size=1+size(n->left)+size(n->right);}
void merge(Node *&n, Node *a, Node *b)
{
    if(!a||!b) n=a?a:b;
    else if( a->prio < b->prio) 
        merge(a->right, a->right, b), n=a; 
    else                        
        merge(b->left, a, b->left), n=b;
    update_size(n);
}

void split(Node *n, Node *&a, Node *&b, int key, int add=0)
{
    if(!n) return void(a=b=0);
    int cnt = add+ size(n->left) +1;
    if(cnt < key) 
        split(n->right, n->right, b, key, cnt), a=n; 
    else          
        split(n->left, a, n->left, key, add), b=n;
    update_size(n);
}

void insert(int key, int val)
{
    static int ptr = 0;
    Node*x =  &pool[ptr++];
    x->val = val;
    x->prio = rand();

    Node *a, *b;
    split(root, a, b, key);
    merge(a,a,x);
    merge(root,a,b);
}

void remove(int key)
{
    Node *a,*b,*t; 
    split(root,a,b,key);
    split(b,t,b,2);
    merge(root,a,b);
}

int find(int key, Node *n=root, int add=0)
{
    if(!n) return -1;
    int cnt = add + size(n->left) + 1;
    if(cnt==key)
        return n->val;
    else if( cnt < key) 
        return find(key, n->right, cnt);
    else 
        return find(key, n->left, add);
}


int main()
{
    //std::ios::sync_with_stdio(false);
    int n,q,a,b,c;
    scanf("%d%d", &n, &q);
    for(int i=1;i<=n;i++)
    {
        scanf("%d", &a);
        insert(i, a);
    }
    while(q--)
    {
        scanf("%d%d", &a, &b);
        if(a==1)
        {
            scanf("%d", &c);
            insert(b,c);
        }
        else if(a==2) remove(b);
        else printf("%d\n", find(b));
    }
    //system("pause");
}

你可能感兴趣的:(ACM算法(题解):,数据结构,——Treap)