先扔到序列上看看……
dp式子写出来一眼斜率优化……
dp[i] =
……因为有个l……所以决策看起来好像不单调啊……斜率也不单调……cdq啊稳啊
分块之后先处理前面那段,然后用前面的结果更新后面的;
反正都分治了,就把需要被更新的点按照 dis[i] - l[i] 从大到小排个序,然后把左边用来更新的dp值……从右往左把可以用来更新的值加进去,维护个凸包;
【第一次挂是没想到从右往左加点…………嗯…我怀疑之前的Flaze不会斜率优化】
cdq上树就……点分啊……
然后……就码到天荒地老【x
===== 我想想都错了些啥【又气又急】 =====
· 有个……就是…………某个地方…………没开long long…………【躺平】
· 对拍的时候……发现自己拍不出错………………然后……好像datamaker少了一行 srand(time(0)) ; ………………
· 在……找祖先的时候……for写反了
· 改的时候不小心删掉了……某个dfs里面的……if ( vis[aim] ) continue ;
· 终于发现自己斜率优化……推式子的时候…………少写了个负号…………于是upper_bound那儿查的是 rec[i].k …………GG
哦对……当时用小数据和毛神还有po姐拍…………然后……嗯……就是…………好像……那个……跑出来不一样的时候………………就是……可能……我用手跑出来的结果…………好像和自己的一样………………嗯……
#include
#define MAXN 200005
using namespace std ; int n , read_t ;
inline int read() {
register int ch = getchar() ;
while (!isdigit(ch)) ch = getchar() ;
register int rtn = 0 ;
while (isdigit(ch)) rtn = rtn*10 + ch - '0' , ch = getchar() ;
return rtn ;
}
inline long long read_ll() {
register int ch = getchar() ;
while (!isdigit(ch)) ch = getchar() ;
register long long rtn = 0 ;
while (isdigit(ch)) rtn = rtn*10 + ch - '0' , ch = getchar() ;
return rtn ;
}
struct t1 {
int to,nxt ;
long long lth ;
}edge[MAXN<<1] ; int cnt_edge ;
int fst[MAXN] ;
inline void addedge(int x, int y, long long lth) {
edge[++cnt_edge].to = y ;
edge[cnt_edge].nxt = fst[x] ;
edge[cnt_edge].lth = lth ;
fst[x] = cnt_edge ;
edge[++cnt_edge].to = x ;
edge[cnt_edge].nxt = fst[y] ;
edge[cnt_edge].lth = lth ;
fst[y] = cnt_edge ;
}
long long dp[MAXN] ;
long long read_lth ;
int fth[MAXN] ;
long long p[MAXN], q[MAXN], l[MAXN] ;
long long dpt[MAXN], dis[MAXN] ;
int siz[MAXN], f[MAXN] ;
int COG, siz_now ;
int vis[MAXN] ;
void dfs0(int now) {
siz[now] = 1 ;
for (int tmp = fst[now]; tmp; tmp = edge[tmp].nxt) {
int aim = edge[tmp].to ;
if (aim == fth[now]) continue ;
dpt[aim] = dpt[now] + 1 ;
dis[aim] = dis[now] + edge[tmp].lth ;
dfs0(aim) ;
siz[now] += siz[aim] ;
f[now] = max ( f[now] , siz[aim] ) ;
}
f[now] = max ( f[now] , n - siz[now] ) ;
if ( f[now] < f[COG] ) COG = now ;
}
int root_now , dpt_now ;
void dfs(int now, int fa) {
siz[now] = 1 ;
f[now] = 0 ;
if ( dpt[now] < dpt_now ) root_now = now, dpt_now = dpt[now] ;
for (int tmp = fst[now]; tmp; tmp = edge[tmp].nxt) {
int aim = edge[tmp].to ;
if ( aim == fa || vis[aim] ) continue ;
dfs(aim, now) ;
siz[now] += siz[aim] ;
f[now] = max( f[now], siz[aim]) ;
}
f[now] = max ( f[now] , siz_now - siz[now] ) ;
if ( f[now] < f[COG] ) COG = now ;
}
struct T1{
int id ;
long long left , k ;
T1(){}
T1(int id, long long left, long long k) : id(id), left(left), k(k) {}
bool operator < (const T1 &ano) const {
return left > ano.left ;
}
}rec[MAXN] ; int cnt_rec = 0 ;
void dfs_(int now, int fa) {
rec[ ++cnt_rec ] = T1(now, dis[now] - l[now], p[now]) ;
for (int tmp = fst[now]; tmp; tmp = edge[tmp].nxt) {
int aim = edge[tmp].to ;
if ( aim == fa || vis[aim] ) continue ;
dfs_(aim, now) ;
}
}
int pAth[MAXN], cnt_path ;
int stk[MAXN], top ;
double KK[MAXN] ;
inline double get_K(int a, int b) {
return ((double)( dp[a]-dp[b] ))
/ ((double)(dis[a]-dis[b])) ;
}
inline void insert( int x ) {
while ( top > 1 && get_K( stk[top-1], stk[top] ) < get_K( stk[top], x) ) --top ;
stk[ ++top ] = x , KK[top] = - get_K( stk[top-1], x) ;
}
inline void DP(int now, int rt) {
cnt_path = 0 , top = 0 ;
for (int i=now; i^fth[rt]; i = fth[i])
pAth[ ++cnt_path ] = i ;
// printf("now = %d\n",now) ;
// for (int i=1; i<=cnt_path; ++i) printf("%d ",pAth[i]) ;
// puts("") ;
for (int i=1, j=1; i<=cnt_rec; ++i) {
int x = rec[i].id ;
for (; j<=cnt_path && dis[ pAth[j] ] >= rec[i].left; ++j)
insert( pAth[j] ) ;
if (top == 1) {
int o = stk[top] ;
if ( rec[i].left <= dis[ o ] )
dp[ x ] = min ( dp[ x ], dp[o] + p[ x ] * ( dis[x] - dis[ o ] ) + q[ x ] ) ;
} else {
if (!top) continue ;
int pos = min ( top*1ll, 1ll* (upper_bound( KK+2, KK+top+1, - rec[i].k ) - KK - 1) ) ;
int o = stk[pos] ;
if ( rec[i].left <= dis[ o ] )
dp[ x ] = min ( dp[ x ], dp[ o ] + p[ x ] * ( dis[x] - dis[o] ) + q[ x ] ) ;
}
}
for (int i=1; i<=cnt_rec; ++i) {
int x = rec[i].id ;
if ( x != now && rec[i].left <= dis[now] )
dp[ x ] = min ( dp[x], dp[now] + p[x] * ( dis[x] - dis[now] ) + q[x] ) ;
}
}
void solve(int now) {
vis[now] = 1 ;
dpt_now = 0x3f3f3f3f ;
dfs(now,0) ;
int rt = root_now ;
if (fth[now] && !vis[fth[now]]) {
siz_now = siz[fth[now]] ;
COG = 0 ;
dfs(fth[now],now) ;
solve(COG) ;
}
rec[ cnt_rec = 1 ] = T1 ( now, dis[now] - l[now] , p[now] ) ;
for (int tmp = fst[now]; tmp; tmp = edge[tmp].nxt)
if ( edge[tmp].to != fth[now] )
dfs_( edge[tmp].to, now ) ;
sort( rec+1, rec+cnt_rec+1 ) ;
DP( now , rt ) ;
for (int tmp = fst[now]; tmp; tmp = edge[tmp].nxt) {
int aim = edge[tmp].to ;
if ( vis[aim] ) continue ;
siz_now = siz[aim] ;
COG = 0 , dfs(aim,now), solve(COG) ;
}
}
int main() {
//freopen("1.in","r",stdin) ;
// freopen("1.out","w",stdout) ;
n = read() , read_t = read() ;
for (int i=1; i<=n; ++i) dp[i] = 1ll<<60 ;
dp[1] = 0 ;
for (int i=2; i<=n; ++i)
fth[i] = read() , read_lth = read_ll() , p[i] = read_ll() , q[i] = read_ll() , l[i] = read_ll() ,
addedge(fth[i], i, read_lth) ;
dpt[1] = 1 ;
f[0] = 0x3f3f3f3f ;
dfs0(1) , solve(COG) ;
for (int i=2; i<=n; ++i)
printf("%lld\n",dp[i]) ;
return 0 ;
}