- FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析
herosunly
大模型精度BF16硬件适配
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了FP16、INT8、INT4精度模型加载占用显存大小的分析,希望对学习大
- educoder机器学习 --- 神经网络
木右加木
educoder机器学习神经网络
第1关:神经网络基本概念1、C第2关:激活函数#encoding=utf8defrelu(x):'''x:负无穷到正无穷的实数'''#*********Begin*********#ifx<=0:return0else:returnx#*********End*********#第3关:反向传播算法#encoding=utf8importosimportpandasaspdfromsklearn.
- 回归预测 | MATLAB实现LSTM-SVR(长短期记忆神经网络-支持向量机)多输入单输出
matlab科研社
神经网络回归matlab
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍长短期记忆神经网络(LSTM)作为一种循环神经网络(RNN)的变体,擅长处理序列数据并捕捉长期依赖关系,而支持向量机(SVR)则是一种强大的回归算法,能够有效地处理高维数据并防止过拟合。将两者结合的LSTM
- SSVEP Next:现代化的 SSVEP 可视化 Web 快速实现
框架主义者
web脑机接口
SSVEPNext:现代化的SSVEP可视化Web快速实现在线使用|GithubSSVEP-Next是一个基于React、TypeScript和Vite构建的单页面应用(SPA),用于快速设计和运行稳态视觉诱发电位(SSVEP)实验的视觉刺激界面。该项目继承自quick-ssvep的核心科学算法,并在架构和交互体验上进行了全面升级。主要特性包括:拖拽式可视化设计:用户可通过拖拽和属性面板,直观地在
- C++贪心算法
kobe_zlx
c++贪心算法开发语言
目录一,定义二,特点三,使用四,步骤:1.将问题分解为若干个问题2.找出适合该题目的贪心策略3.求解每个子问题的最优解4.组合局部最优解五,例题:1,最优装载题目分析(个人想法):详见代码:2,删数问题题目分析:ACcode一,定义贪心算法(greedyalgorithm)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,得到的是在某种意义上的局部最优解二,特
- MC0309魔法项链
Cando-01
算法与数据结构算法c++数据结构
思路:以数位贡献的思路来写这题,统计每一位上为1的个数:对于第k位,统计有多少个数在这一位上为1,记作cnts[k]枚举每个数,逐位分析它对整体的贡献(即与其它数交互时的和):如果第k位为1:&中只有其他第k位为1的数才会产生贡献:共cnts[k]-1个|中其他所有n-1个数都可以贡献总和为:(1≪k)×((n−1)+(cnts[k]−1))如果第k位为0:&无贡献|仅与第k位为1的数有贡献(共c
- 初学Spring AI 笔记
笑衬人心。
大模型学习spring人工智能笔记
目录SpringAI简介依赖与环境配置基础概念集成OpenAI(或其他LLM提供商)Prompt模板引擎Embedding与向量数据库SpringAIChatClient使用SpringAI和LangChain对比常见问题与建议SpringAI简介SpringAI是Spring团队推出的人工智能集成框架,旨在简化AI模型(如OpenAI、HuggingFace、Mistral、AzureOpenA
- 如何用DeepSeek做动画和视频
诸葛务农
后端深度学习
1、DeepSeek本身不能生成视频需要结合其他AI工具如RunwayML、Pika、Labs、Sora(如果可用),或者传统软件如Blender、AdobeAfterEffects等。可以使用DeepSeek生成脚本、分镜描述或代码片段,用于其他工具的动画制作。还要注意使用友好型的AI工具,如使用Canva制作简单动画,或使用文本生成视频的工具如Synthesia。可能更适合没有专业背景的用户。
- C++算法——贪心算法的讲解与实践
不東工作室
算法c++贪心算法
目录引言贪心算法概述贪心算法的适用条件贪心算法的实现步骤C++实现贪心算法问题:硬币找零问题C++代码实现总结参考文献引言在算法的世界中,贪心算法是一种在每一步选择中都采取在当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法策略。这种算法简单易懂,且在某些问题上能够快速得到近似最优解。本文将通过C++语言对贪心算法进行讲解,并结合实际例子来展示其应用。贪心算法概述贪心算法在解决问题
- RISC-V设计之Decoder的封装与函数(二)
RISC-V设计之封装与函数(SV)写在前面:今天去见了导师,他强烈要求我把设计中的decoder删去,去掉宏定义引入局部变量,使用封装的函数来取而代之。并在其他运算模块调用函数的返回值,提高代码简洁度和清晰度,避免全局变量污染环境,下面是根据导师的主页总结的设计笔记。-----2025/7/1示例代码:这个opcodes包是为一个简单的处理器设计的辅助模块,作用是封装指令解析相关的功能,供CPU
- SQL语句全攻略:从基础到进阶的编程之旅
奔跑吧邓邓子
必备核心技能sql数据库基础语法高级应用
目录一、引言二、SQL基础语法2.1SQL语句写法顺序2.2关联查询2.3数据处理常用函数和运算符三、数据库和表的基本操作3.1创建数据库3.2使用数据库3.3创建表四、基础增删改查操作4.1插入数据(增)4.2查询数据(查)4.3更新数据(改)4.4删除数据(删)五、复杂关系操作5.1一对多关系操作5.2多对多关系操作六、SQL优化技巧6.1索引的使用6.2避免子查询6.3其他优化建议七、SQL
- 浅谈ThreadLocal
千楼
java开发语言后端
1.ThreadLocal简介ThreadLocal叫做线程变量,意思是ThreadLocal中填充的变量属于当前线程,该变量对其他线程而言是隔离的,也就是说该变量是当前线程独有的变量。ThreadLocal为变量在每个线程中都创建了一个副本,那么每个线程可以访问自己内部的副本变量。ThreadLoal变量,线程局部变量,同一个ThreadLocal所包含的对象,在不同的Thread中有不同的副本
- Java 里 Hibernate 的多租户架构实现
AI大模型应用实战
javahibernate架构ai
Java里Hibernate的多租户架构实现关键词:Java、Hibernate、多租户架构、多租户实现、数据隔离摘要:本文深入探讨了在Java中利用Hibernate实现多租户架构的相关技术。首先介绍了多租户架构的背景和意义,包括目的、预期读者、文档结构以及相关术语。接着阐述了Hibernate多租户的核心概念,给出了原理和架构的文本示意图与Mermaid流程图。详细讲解了核心算法原理,通过Py
- 服务器pci数据捕获和信号处理 感叹号,PCI数据捕获和信号处理控制器win7驱动
这是PCI数据捕获和信号处理控制器win7驱动下载,有些电脑在安装了系统后会在设备管理器中出现PCI数据捕获和信号处理控制器黄色感叹号提示,此时需要安装“IntelTurboBoost”驱动软件。软件介绍有时候我们装完系统的时候,各种驱动都安装完毕了,然后发现系统属性里面的设备管理器其他设备—PCI数据捕获和信号处理器控制器上还是有个问号,此款驱动就是解决这个问题的。PCI数据捕获和信号处理控制器
- 深度学习 vs 传统机器学习:哪个更适合你的项目?
AI大模型应用之禅
深度学习机器学习人工智能ai
深度学习vs传统机器学习:哪个更适合你的项目?关键词:深度学习、传统机器学习、特征工程、数据量、计算资源、项目选择、算法对比摘要:本文将用"炒菜"和"拼图"等生活案例,从核心原理、适用场景、资源需求等维度对比深度学习与传统机器学习。通过具体代码示例和真实项目场景分析,帮助开发者和企业决策者快速判断:你的项目该选深度学习还是传统机器学习?背景介绍目的和范围随着AI技术普及,"该用深度学习还是传统机器
- colour-demosaicing:实现多款CFA去马赛克算法的Python开源包
常琚蕙
colour-demosaicing:实现多款CFA去马赛克算法的Python开源包colour-demosaicingCFA(ColourFilterArray)DemosaicingAlgorithmsforPython项目地址:https://gitcode.com/gh_mirrors/co/colour-demosaicing项目介绍在数字图像处理领域,马赛克效应(Mosaicing)是
- pychram虚拟环境中安装不同python版本
小炫y
python
安装AnacondaAnaconda|TheWorld'sMostPopularDataSciencePlatform安装时选justme路径可以改,其他默认都可以。然后打开anacondaprompt输入指令安装需要的python版本,condacreate-npython39Python=3.9再输入y确认查看python虚拟环境路径,condainfo-e然后在pycharm中设置一下就可以
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- realloc() 用法详解
小可爱amour
C/C++算法
原型:externvoid*realloc(void*mem_address,unsignedintnewsize);语法:指针名=(数据类型*)realloc(要改变内存大小的指针名,新的大小)。//新的大小若小于原来的大小,原数据的末尾可能丢失(被其他使用内存的数据覆盖等)头文件:#include有些编译器需要#include,在TC2.0中可以使用alloc.h头文件功能:先判断当前的指针是
- Milvus向量数据库入门指南
longfei.li
milvus数据库人工智能
一、Milvus简介Milvus是一个开源的向量数据库,专为AI应用和向量相似度搜索而设计,以加速非结构化数据的检索。自2019年创建以来,Milvus专注于存储、索引和管理由深度神经网络和其他机器学习模型生成的海量嵌入向量。其能够处理万亿级别的向量索引任务。Milvus的核心优势在于其高效的索引机制,它支持多种索引类型,包括FLAT、IVF_FLAT、IVF_SQ8、IVF_PQ和HNSW等。这
- strings.ToLowerSpecial 使用详解
幸享龙枫
golanggolang
目录1.官方包2.支持版本3.官方说明4.作用5.实现原理6.推荐使用场景和不推荐使用场景推荐场景不推荐场景7.使用场景示例示例1:官方示例示例2:德语内容处理(保留ß不变)8.性能及同类对比性能特点对比其他方法(转换100KB土耳其语文本)9.总结特性说明对比总结表最终建议1.官方包是的,strings.ToLowerSpecial是Go语言标准库strings包中的函数,属于官方提供的核心功能
- GDAL读取Jpeg2000格式图像
蒙山蒙水
C++算法图像处理c++GDAL遥感JPEG2000
JPEG-2000标准支持无损和有损压缩,并且支持单图像分量(如灰度图像)和多图像分量(如彩色图像)。除了基本的图像压缩功能外,还支持其他的功能:1)对图像进行按精度或者按分辨率来渐进显示。2)感兴趣编码,就是对不同的图像区域给予不同的精度。3)对图像的某个区域进行随机访问时,不用对整个码流进行解码。4)提供一种灵活的图像格式,这种格式能够分辨出那些是图像数据信息,那些是码流内部信息。5)具有较好
- Golang领域GOROOT的配置与使用技巧
Golang编程笔记
golang爬虫开发语言ai
Golang领域GOROOT的配置与使用技巧关键词:Golang,GOROOT,配置,使用技巧,环境变量摘要:本文详细介绍了Golang领域中GOROOT的相关知识。首先阐述了GOROOT的背景,包括其目的、适用读者、文档结构和相关术语。接着深入解析了GOROOT的核心概念及与其他关键元素的联系,并通过Mermaid流程图展示其架构。之后详细讲解了GOROOT配置的核心算法原理及具体操作步骤,配以
- Spring框架-IOC
五月茶
springjava后端
1.Spring框架的介绍Spring框架是一个开源的JavaEE应用程序主要核心是IOC和AOP两大技术IOC:InversionofControl,控制反转。它是通过将控制权从应用程序中移出,使得对象的创建和管理由框架来完成,从而降低系统间的耦合度。DI:DependencyInjection,依赖注入。它是一种设计模式,属于控制反转的一部分。其基本思想是将对象的依赖(即它所需要的其他对象)通
- 常见机器学习算法与应用场景
计算机软件程序设计
知识科普机器学习算法人工智能
当然可以。下面是对常见机器学习算法的全面详细阐述,包括每种算法的基本原理、特点以及典型应用场景。1.监督学习(SupervisedLearning)1.1线性回归(LinearRegression)原理:通过拟合一条直线来表示输入和输出之间的关系,适用于预测连续值输出。特点:简单易懂,计算速度快,但只能捕捉线性关系。应用场景:房价预测股票价格预测销售额预测1.2逻辑回归(LogisticRegre
- LeetCode 70:爬楼梯|递归到动态规划全路径解析
kiki_2411
算法设计与分析leetcode动态规划算法
本篇博客将通过LeetCode第70题“ClimbingStairs”为例,系统讲解从递归暴力解法到记忆化搜索、再到动态规划及空间优化的四种典型思路,适合算法初学者深入掌握递归与DP基础。文章目录LeetCode70|爬楼梯一、题目描述二、思路分析三、方法一:递归(不带记忆)思路C++代码四、方法二:递归+记忆化搜索(Top-DownDP)思路五、方法三:动态规划(Bottom-Up)思路六、方法
- ADB 安装 APK 及处理安装弹窗的方法
要站在顶端
APP自动化adb
ADB安装APK及处理安装弹窗的方法总结✅背景说明在自动化测试或CI流程中(如JenkinsPipeline),我们经常需要通过ADB安装APK。但在某些设备上,安装过程会弹出“继续安装”按钮或其他确认界面,导致安装命令阻塞,无法继续执行后续操作。为此,我们需要:避免安装卡住自动点击安装按钮(如果必须)保证脚本兼容性(尤其适配Windows+Jenkins)方法一:使用adbinstall-r--
- 深入理解HashMap:从数据结构到高并发战场
达利源
java面试题哈希算法散列表算法
以下是我在财税业务中的自我体会:一、核心矛盾与设计哲学想象一个存放千万级纳税人信息的仓库(Map)。你需要:极速存取:输入ID,瞬间定位到对象。动态扩容:纳税人数量激增时,仓库能自动变大。空间高效:避免仓库大部分区域空置。线程安全(可选):多窗口(线程)同时办理业务不混乱。HashMap的答卷:核心武器:数组+链表/红黑树灵魂算法:哈希函数(HashFunction)扩容策略:负载因子(LoadF
- [由浅入深理解神经网络] 2 张量流与反向传播
由浅入深理解神经网络2张量流与反向传播0前言1张量流和运算图2复合函数视角2.1复合函数求导2.1.1链式法则2.1.2多元函数的链式法则2.2前馈网络的反向传播2.3任意网络的反向传播3结语0前言在由浅入深理解神经网络1一个简单到极致的神经网络中,我们已经发现了训练神经网络最重要的一件事,那就是求梯度,然后优化算法利用梯度来调整网络参数.我们重写一下前面提到的一个通用的神经网络:y=f(x;θ)
- Django REST framework - 元数据
pythondjango
[OPTIONS]方法允许客户端确定与资源相关联的选项和/或要求,或者服务器的能力,而不暗示资源操作或启动资源检索。——RFC7231,第4.3.7节。RESTframework包含一个可配置的机制,用于确定你的API应该如何响应OPTIONS请求。这允许你返回API模式或其他资源信息。目前没有被广泛采用的关于OPTIONS请求应该返回何种风格响应的确切约定,因此我们提供了一种临时风格,返回一些有
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发