- MCP与Sequential Thinking:系统问题的分解与解决之道
Echo_Wish
Python进阶python人工智能算法
MCP与SequentialThinking:系统问题的分解与解决之道引言:复杂问题背后的逻辑思维在面对复杂问题时,我们常常感到手足无措,尤其是在需要将任务分解为多个步骤时。这是对个人思维能力的极大挑战,而掌握有效的思维工具则可以让事情事半功倍。今天我们讨论的两个工具:MCP(MutuallyExclusiveCollectivelyExhaustive)和SequentialThinking(顺
- The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models
UnknownBody
LLMDailyCausalandReasoning语言模型人工智能
文章主要内容总结本文围绕大推理模型(LRMs)的推理能力展开系统研究,通过可控谜题环境分析其在不同问题复杂度下的表现,揭示其优势与局限性:研究背景与问题:当前LRMs(如OpenAIo1/o3、DeepSeek-R1等)虽在推理基准测试中表现提升,但对其底层能力、缩放特性及局限性的理解不足。现有评估依赖数学和编码基准,存在数据污染且缺乏对推理轨迹的深度分析。研究方法:采用可控谜题环境(如汉诺塔、跳
- 系统、架构、结构思维辨析
深海科技服务
IT应用探讨架构大数据服务器linux程序人生
一、什么是系统、架构、结构思维系统式思维、架构式思维和结构化思维都是解决复杂问题的重要思维方式,它们之间既有联系又有区别。1.系统式思维(SystemsThinking)定义:系统式思维是一种宏观的、整体性的思考方式,它关注事物作为一个整体的运作方式,以及其组成部分之间如何相互关联、相互影响。它强调理解事物内部的结构、模式、周期和反馈回路,而不是孤立地看待某个问题或某个部分。核心思想:整体性:看到
- 【AI论文】GLM-4.1V-思考:借助可扩展强化学习实现通用多模态推理
东临碣石82
人工智能
摘要:我们推出GLM-4.1V-Thinking这一视觉语言模型(VLM),该模型旨在推动通用多模态推理的发展。在本报告中,我们分享了在以推理为核心的训练框架开发过程中的关键发现。我们首先通过大规模预训练开发了一个具备显著潜力的高性能视觉基础模型,可以说该模型为最终性能设定了上限。随后,借助课程采样强化学习(ReinforcementLearningwithCurriculumSampling,R
- Cline中配置MCP
Alexon Xu
MCP
1、自动安装MCP默认AI生成的配置会报错:spawnnpxENOENTspawnnpxENOENT,然后排查了npx安装都是OK的,需要使用cmd运行npx,配置如下:{"mcpServers":{"sequentialthinking":{"autoApprove":[],"disabled":false,"timeout":60,"command":"cmd.exe","args":["/c
- 深入理解reeze/tipi项目中的词法分析与语法分析技术
焦习娜Samantha
深入理解reeze/tipi项目中的词法分析与语法分析技术tipiThinkingInPHPInternals,AnopenbookonPHPInternals项目地址:https://gitcode.com/gh_mirrors/ti/tipi引言在编程语言实现领域,词法分析和语法分析是构建编译器或解释器的关键环节。本文将基于reeze/tipi项目中的相关内容,深入浅出地讲解这些核心技术原理。
- Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model 论文阅读
钟屿
论文阅读人工智能深度学习学习图像处理计算机视觉
Diff-Retinex:用生成式扩散模型重新思考低光照图像增强摘要本文中,我们重新思考了低光照图像增强任务,并提出了一种物理可解释的生成式扩散模型,称为Diff-Retinex。我们的目标是整合物理模型和生成网络的优点。此外,我们希望通过生成网络补充甚至推断低光照图像中缺失的信息。因此,Diff-Retinex将低光照图像增强问题表述为Retinex分解和条件图像生成。在Retinex分解中,我
- 【番外】 AI 时代应具备的四大核心能力
成都犀牛
人工智能大模型人工智能机器学习
四大核心能力AI思维、整合力、引导力、判断力另:如果想快速吸收,可以直接下拉到最后看总结1.AI思维(AIThinking)AI思维是人工智能模型在执行任务时所展现的“思考”方式,是其内部决策逻辑和数据处理能力的体现。算法思维(AlgorithmicThinking):解释:指AI理解和执行决策逻辑的能力。这包括理解任务的内在结构,将问题分解为可处理的步骤,并按照预设或学习到的算法进行处理。它关注
- 论文阅读:arxiv 2025 OThink-R1: Intrinsic Fast/Slow Thinking Mode Switching for Over-Reasoning Mitigation
CSPhD-winston-杨帆
论文阅读
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328https://www.doubao.com/chat/8815924393371650https://arxiv.org/pdf/2506.02397#page=17.09OThink文章目录速览研究背景与问题核心思路与方法实验结果结论与意义速览这篇论文聚焦于
- 论文阅读:arxiv 2025 Not All Tokens Are What You Need In Thinking
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328https://arxiv.org/pdf/2505.17827https://www.doubao.com/chat/8814790364572162文章目录速览研究背景提出的解决方案:条件token选择(CTS)实验结果核心贡献研究局限总结速览这篇论文主要探
- CppCon 2016 学习:Lightweight Object Persistence With Modern C++
虾球xz
CppCon学习c++开发语言
你给出的这段文字是某个演讲、论文或者技术文档的概要(Overview)部分,内容主要是关于内存分配器(allocator)设计以及**对象持久化(objectpersistence)**的一些思路。让我帮你逐条解析和理解:Overview(概要)•Goals(目标)Describeawayofthinkingaboutallocatordesignthatmaybehelpful描述一种设计内存分
- ✨如何在 vLLM 中取消 Qwen3 的 Thinking 模式
杨靳言先
人工智能pythonchatgpt自然语言处理pytorch
如何在vLLM中取消Qwen3的Thinking模式在使用Qwen3模型与vLLM(VeryLargeLanguageModel)进行推理服务时,你可能会发现模型默认会输出类似“我正在思考……”的提示内容。这种行为被称为Thinking模式。如果你希望跳过这些提示内容,直接返回模型结果,本文将介绍两种实现方式。什么是Thinking模式?Thinking模式是Qwen3在推理时默认输出的一种提示语
- fastadmin发送邮箱提示“SMTP Server did not respond with anything I recognized”
爱吃西红柿!
php
修改vendor/txthinking/mailer/src/Mailer/SMTP.php亲测有效
- 17、Swift框架微调实战(2)-QWQ-32B LORA微调cot数据集
Andy_shenzl
大模型学习SwiftQWQ微调LORA
1、QWQ-32B介绍1.1基本介绍QwQ是Qwen系列的大模型之一,专注于推理能力(reasoning)。相比于传统的指令微调(instruction-tuned)模型,QwQ具备思考与推理(thinkingandreasoning)的能力,因此在各种下游任务(特别是复杂问题)上,能实现显著的性能提升。QwQ-32B是该系列的中等规模推理模型,其性能可媲美当前最先进的推理模型,如DeepSeek
- 大模型现象级发现-2025年上半年 资料收集
CSPhD-winston-杨帆
人工智能
相关资料让QwQ思考模型-不思考的小技巧2025-05-27最新实验:不听人类指令OpenAI模型拒绝自我关闭https://x.com/PalisadeAI/status/1926084635903025621公众号qwen3的致命幻觉!大模型微调会思考的大模型更不听话,我的豆包失控了…WhenThinkingFails:ThePitfallsofReasoningforInstruction-
- 多目标跟踪笔记2023
AI算法网奇
数据结构与算法目标跟踪笔记人工智能
目录cvpr2023多目标跟踪算法汇总:MixFormerV2ovtrack模型284MMotionTrackFocusOnDetails:OnlineMulti-objectTrackingwithDiverseFine-grainedRepresentation1、摘要2、方法Observation-CentricSORT:RethinkingSORTforRobustMulti-Object
- 图文检索(1):Rethinking Benchmarks for Cross-modal Image-text Retrieval
简简单单的貔貅
图文检索深度学习计算机视觉
RethinkingBenchmarksforCross-modalImage-textRetrieval摘要1引言2相关工作2.1Image-Textretrieval2.2Image-TextDatasets3方法3.1更新图像候选池3.1.1准备候选图像3.1.2搜索相似的图像3.1.3组装相似的图像集3.2对粗粒度文本进行翻新3.2.1找到粗粒度的文本3.2.2提示生成细节3.2.3合并新
- LeapVAD:通过认知感知和 Dual-Process 思维实现自动驾驶飞跃——论文阅读
一点.点
#自动驾驶人工智能语言模型
《LeapVAD:ALeapinAutonomousDrivingviaCognitivePerceptionandDual-ProcessThinking》2025年1月发表,来自浙江大学、上海AI实验室、慕尼黑工大、同济大学和中科大的论文。尽管自动驾驶技术取得了显著进步,但由于推理能力有限,数据驱动的方法仍然难以应对复杂的场景。与此同时,随着视觉语言模型的普及,知识驱动的自动驾驶系统也得到了长
- NoThinking vs Thinking:推理模型无需思考也能有效
王哥儿聊AI
大模型论文阅读解析人工智能语言模型自然语言处理
摘要:最近的大型语言模型(LLMs)显著提升了推理能力,主要是通过在生成过程中包含一个明确且冗长的“思考”过程来实现的。在本文中,我们质疑这种明确的思考过程是否真的必要。我们使用最先进的DeepSeek-R1-Distill-Qwen模型,发现通过简单的提示绕过思考过程(记作NoThinking)可以出人意料地有效。在控制token数量的情况下,NoThinking在多个具有挑战性的推理数据集上优
- Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models
绒绒毛毛雨
搜索推荐语言模型人工智能自然语言处理
文章目录摘要1引言2背景:长思维链推理模型与过度思考现象2.1思维链(CoT)推理2.2长CoT推理模型中的过度思考问题3基于模型的高效推理3.1基于长度奖励设计的强化学习(RL)3.2使用可变长度CoT数据的监督微调(SFT)3.2.1构建可变长度CoT推理数据集3.2.2微调方法4基于推理输出的高效推理4.1将推理步骤压缩为更少的潜在表示4.2推理过程中的动态推理范式4.2.1基于显式标准的动
- 进阶篇09self-Ask-大模型
monday_CN
机器学习大数据人工智能
AIAgent技术框架进阶教程:SelfAsk深度解析系列课程进度已完成章节:9章当前更新内容:SelfAsk框架详解即将更新:ThinkingandSacrifici框架解析目录知识回顾SelfAsk框架原理实战代码解析版本迁移指南最佳实践建议常见问题解答1.知识回顾PlanandExecute核心要点需要工具直接处理未完成已完成用户请求任务分解子任务列表执行判断外部API调用内部计算状态更新完
- AI Agent(十一)-Camel基于AI的图像内容识别
AI_Auto
人工智能人工智能AIAgent
AIAgent系列【十一】一.Camel库函数修复二、代码实现一.Camel库函数修复对于camel-ai版本为0.2.22的安装包程序,base_model中函数preprocess_messages,此函数的作用是对消息列表进行预处理,主要目的是在将消息发送到模型API之前,移除消息中的“思考内容”(thinkingcontent),并执行其他模型特定的预处理操作。需要修改的文件地址为:…Li
- TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters
不打灰的小刘
dailypapertransformer深度学习人工智能语言模型
基本信息原文链接:https://arxiv.org/abs/2410.23168作者:HaiyangWang,YueFan,MuhammadFerjadNaeem,YongqinXian,JanEricLenssen,LiweiWang,FedericoTombari,BerntSchiele️关键词:ProgressiveScaling,Attentionmechanism分类:机器学习摘要中
- Tokenformer: 下一代Transformer架构
码农Q!
transformer深度学习人工智能agiailangchainchatgpt
1.导言Transformer架构已经成为当今大模型的基石,不管是NLP还是CV领域,目前的SOTA模型基本都是基于Transformer架构的,比如NLP中目前的各种知名大模型,或者CV中的Vit等模型本次介绍的论文标题为:Tokenformer:RethinkingTransformerScalingwithTokenizedModelParameters,”顾名思义,本文提出了Tokenfo
- 月之暗面再次开源Kimi大模型——Kimi-VL-A3B-Instruct 和 Kimi-VL-A3B-Thinking
吴脑的键客
机器人技术DeepSeek开源人工智能
我们介绍的Kimi-VL,是一种高效的开源专家混合物(MoE)视觉语言模型(VLM),它具有先进的多模态推理能力、长语境理解能力和强大的代理能力,而在其语言解码器(Kimi-VL-A3B)中只需激活2.8B个参数。Kimi-VL在各个具有挑战性的领域都表现出了强劲的性能:作为一种通用的视觉语言模型,Kimi-VL在多轮代理交互任务(例如OSWorld)中表现出色,取得了与旗舰模型相当的先进成果。此
- 利用解析差异SSRF + sqlite注入 + waf逻辑漏洞 -- xyctf 2025 fate WP
A5rZ
网络安全
本文章附带TP(ThinkingProcess)!#!/usr/bin/envpython3#导入所需的库importflask#Flaskweb框架importsqlite3#SQLite数据库操作importrequests#HTTP请求库importstring#字符串处理importjson#JSON处理app=flask.Flask(__name__)#创建Flask应用实例blackl
- 书籍-《意志与责任:人工智能的法律思考》
人工智能机器学习机器人自动驾驶
书籍:WillandResponsibility:LegalThinkingofArtificialIntelligence作者:JunGu,ChunmingXu出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《意志与责任:人工智能的法律思考》01书籍介绍本书深入探究了作者在人工智能(AI)领域的法律思考。当下,人工智能在科技行业以及公众群体中引发了日益浓厚的兴趣。作为“
- 投机解码EAGLE精读
rommel rain
transformer语言模型人工智能
题目:EAGLE:SpeculativeSamplingRequiresRethinkingFeatureUncertainty[ICML2024]发表于24.02链接:https://arxiv.org/abs/2401.15077本文一作对该工作的讲解:智源社区活动LLM推理是自回归的,这个自回归是从token层开始的自回归(也就是词元被转成嵌入的那一层)。而EAGLE将这一自回归延后到了特征
- 后真相时代的critical thinking:辨识真相的能力培养
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
嗯,用户希望我写一篇关于后真相时代培养批判性思维的文章,而且结构非常详细,包括背景介绍、核心概念、算法原理等等。我得先理清楚每个部分需要涵盖的内容。首先,标题是《后真相时代的criticalthinking:辨识真相的能力培养》,关键词应该包括后真相、批判性思维、信息辨别、逻辑分析、证据评估、算法原理。摘要部分要简明扼�地总结文章的核心,强调批判性思维的重要性及其在各个领域的应用。接下来是背景介绍
- claude-3-7-sonnet-20250219 支持深度思考,流式输出
徐同保
前端javascript开发语言
node代码(美国服务器):constchatAnthropicAiOnAzureForStream=async(req,res)=>{let{messages,apiKey='sk-xxx',type='1',thinking=false}=req.bodyres.setHeader('Content-Type','text/event-stream;charset=utf-8')res.set
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那