python matplotlib:figure,add_subplot,subplot,subplots讲解实现

最近又用到了matplotlib 中画图的函数。总结几个常用的函数的作用于区别。

from matplotlib import pyplot as plt

1.figure()

函数定义matplotlib.pyplot.figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True, FigureClass=, clear=False, **kwargs)

plt.figure()创建一个画布。

主要讲一个参数num:相当于给画布定义一个id,如果给出了num,之前没有使用,则创建一个新的画布;如果之前使用了这个num,那么返回那个画布的引用,在之前的画布上继续作图。如果没有给出num, 则每次创建一块新的画布。

import numpy as np
from matplotlib import pyplot as plt
from scipy.interpolate import interp1d
 
x=np.linspace(0,10*np.pi,num=20)
y=np.sin(x)
yn=np.cos(x)
f1=interp1d(x,y,kind='linear')#线性插值
f2=interp1d(x,y,kind='cubic')#三次样条插值
x_pred=np.linspace(0,10*np.pi,num=1000)
y1=f1(x_pred)
y2=f2(x_pred)
plt.figure(1)
plt.plot(x_pred,y1,'r',label='linear')
plt.plot(x_pred,y2,'b--',label='cubic')
plt.legend()
# plt.show()
plt.figure(2)
plt.plot(x,yn,label='new')
plt.legend()
plt.show()
 
  1. plt.show()

python matplotlib:figure,add_subplot,subplot,subplots讲解实现_第1张图片

import numpy as np
from matplotlib import pyplot as plt
from scipy.interpolate import interp1d
 
x=np.linspace(0,10*np.pi,num=20)
y=np.sin(x)
yn=np.cos(x)
f1=interp1d(x,y,kind='linear')#线性插值
f2=interp1d(x,y,kind='cubic')#三次样条插值
x_pred=np.linspace(0,10*np.pi,num=1000)
y1=f1(x_pred)
y2=f2(x_pred)
plt.figure(1)
plt.plot(x_pred,y1,'r',label='linear')
plt.plot(x_pred,y2,'b--',label='cubic')
plt.legend()
# plt.show()
plt.figure(1)
plt.plot(x,yn,label='new')
plt.legend()
plt.show()
 

python matplotlib:figure,add_subplot,subplot,subplots讲解实现_第2张图片

 2 add_subplot()

add_subplot(*args**kwargs)

向图中加入子图的轴。返回子图的坐标轴axes

import numpy as np
from matplotlib import pyplot as plt
from scipy.interpolate import interp1d
 
x=np.linspace(0,10*np.pi,num=20)
y=np.sin(x)
yn=np.cos(x)
f1=interp1d(x,y,kind='linear')#线性插值
f2=interp1d(x,y,kind='cubic')#三次样条插值
x_pred=np.linspace(0,10*np.pi,num=1000)
y1=f1(x_pred)
y2=f2(x_pred)
fig = plt.figure()
fig.add_subplot(221)
plt.plot(x_pred,y1,'r',label='linear')
fig.add_subplot(222)
plt.plot(x_pred,y2,'b--',label='cubic')
 
plt.show()

python matplotlib:figure,add_subplot,subplot,subplots讲解实现_第3张图片

 通过ax设置各种图的参数。

import matplotlib.pyplot as plt
 
fig = plt.figure()
fig.suptitle('bold figure suptitle', fontsize=14, fontweight='bold')
ax = fig.add_subplot(111)
fig.subplots_adjust(top=0.85)
ax.set_title('axes title')
ax.set_xlabel('xlabel')
ax.set_ylabel('ylabel')
ax.text(3, 8, 'boxed italics text in data coords', style='italic',
        bbox={'facecolor':'red', 'alpha':0.5, 'pad':10})
ax.text(2, 6, r'an equation: $E=mc^2$', fontsize=15)
# ax.text(3, 2, unicode('unicode: Institut f\374r Festk\366rperphysik', 'latin-1'))
ax.text(0.95, 0.01, 'colored text in axes coords',
        verticalalignment='bottom', horizontalalignment='right',
        transform=ax.transAxes,
        color='green', fontsize=15)
ax.plot([2,3,4], [1,2,5], 'o')
ax.annotate('annotate', xy=(2, 1), xytext=(3, 4),
            arrowprops=dict(facecolor='black', shrink=0.05))
ax.axis([0, 10, 0, 11])
plt.show()

3.subplot()

matplotlib.pyplot.subplot(*args**kwargs):当前图中加子图

plt.subplot(221)
 
# equivalent but more general
ax1=plt.subplot(2, 2, 1)
import numpy as np
import matplotlib.pyplot as plt
 
# Fixing random state for reproducibility
np.random.seed(19680801)
 
 
x = np.random.rand(10)
y = np.random.rand(10)
z = np.sqrt(x**2 + y**2)
 
plt.subplot(321)
plt.scatter(x, y, s=80, c=z, marker=">")
 
plt.subplot(322)
plt.scatter(x, y, s=80, c=z, marker=(5, 0))
 
verts = np.array([[-1, -1], [1, -1], [1, 1], [-1, -1]])
plt.subplot(323)
plt.scatter(x, y, s=80, c=z, marker=verts)
 
plt.subplot(324)
plt.scatter(x, y, s=80, c=z, marker=(5, 1))
 
plt.subplot(325)
plt.scatter(x, y, s=80, c=z, marker='+')
 
plt.subplot(326)
plt.scatter(x, y, s=80, c=z, marker=(5, 2))
 
plt.show()

 4. subplots()

matplotlib.pyplot.subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw) :创建一个图形和一组子图。

nrows, ncols : int, optional, default: 1 子图网络的行列数。.

examples:

#First create some toy data:
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)
 
#Creates just a figure and only one subplot
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title('Simple plot')
 
#Creates two subplots and unpacks the output array immediately
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
ax1.plot(x, y)
ax1.set_title('Sharing Y axis')
ax2.scatter(x, y)
 
#Creates four polar axes, and accesses them through the returned array
fig, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True))
axes[0, 0].plot(x, y)
axes[1, 1].scatter(x, y

返回: fig, ax

import matplotlib.pyplot as plt
 
data = {'apples': 10, 'oranges': 15, 'lemons': 5, 'limes': 20}
names = list(data.keys())
values = list(data.values())
 
fig, axs = plt.subplots(1, 3, figsize=(9, 3), sharey=True)
axs[0].bar(names, values)
axs[1].scatter(names, values)
axs[2].plot(names, values)
fig.suptitle('Categorical Plotting')


个人喜好用1画一个图,4画多个图。 

class matplotlib.axes.Axes(fig, rect, facecolor=None, frameon=True, sharex=None, sharey=None, label='', xscale=None, yscale=None, **kwargs):

The Axes contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system.
 

本文转自:Rookiekk  的博客https://blog.csdn.net/qq_18888869/article/details/84874743 

你可能感兴趣的:(python)