在统计学中概率分布中的概率密度函数PDF,概率质量PMF,累积分布CDF

一. 概念解释

PDF:概率密度函数(probability density function), 在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。

PMF : 概率质量函数(probability mass function), 在概率论中,概率质量函数是离散随机变量在各特定取值上的概率。

CDF : 累积分布函数 (cumulative distribution function),又叫分布函数,是概率密度函数的积分,能完整描述一个实随机变量X的概率分布。

二. 数学表示

PDF:如果XX是连续型随机变量,定义概率密度函数为 fX(x) f X ( x ) ,用PDF在某一区间上的积分来刻画随机变量落在这个区间中的概率,即

Pr(aXb)=bafX(x)dx Pr ( a ≤ X ≤ b ) = ∫ a b f X ( x ) d x
PMF:如果XX离散型随机变量,定义概率质量函数为 fX(x) f X ( x ) ,PMF其实就是高中所学的离散型随机变量的分布律,即
fX(x)=Pr(X=x) f X ( x ) = Pr ( X = x )
比如对于掷一枚均匀硬币,如果正面令 X=1 X = 1 ,如果反面令 X=0 X = 0 ,那么它的PMF就是
fX(x)={12 if x{0,1}0 if x{0,1} f X ( x ) = { 1 2  if  x ∈ { 0 , 1 } 0  if  x ∉ { 0 , 1 }
CDF:不管是什么类型(连续/离散/其他)的随机变量,都可以定义它的累积分布函数,有时简称为分布函数。

对于连续型随机变量,显然有
FX(x)=Pr(Xx)=xfX(t)dt F X ( x ) = Pr ( X ≤ x ) = ∫ − ∞ x f X ( t ) d t
那么CDF就是PDF的积分,PDF就是CDF的导数。
对于离散型随机变量,其CDF是分段函数,比如举例中的掷硬币随机变量,它的CDF为
FX(x)=Pr(Xx)=0 if x<012 if 0x<11 if x1 F X ( x ) = Pr ( X ≤ x ) = { 0  if  x < 0 1 2  if  0 ≤ x < 1 1  if  x ≥ 1

三.概念分析

 根据上述,我们能得到一下结论:

 1)PDF是连续变量特有的,PMF是离散随机变量特有的;
 2)PDF的取值本身不是概率,它是一种趋势(密度)只有对连续随机变量的取值进行积分后才是概率,也就是说对于连续值确定它在某一点的概率是没有意义的;
 3)PMF的取值本身代表该值的概率。

四.分布函数的意义

  我们从两点来分析分布函数的意义:
  
  1.为什么需要分布函数?

  对于离散型随机变量,可以直接用分布律来描述其统计规律性,而对于非离散型的随机变量,如连续型随机变量,因为我们无法一一列举出随机变量的所有可能取值,所以它的概率分布不能像随机变量那样进行描述,于是引入PDF,用积分来求随机变量落入某个区间的概率。分布律不能描述连续型随机变量,密度函数不能描述离散随机变量,因此需要找到一个统一方式描述随机变量统计规律,这就有了分布函数。另外,在现实生活中,有时候人们感兴趣的是随机变量落入某个范围内的概率是多少,如掷骰子的数小于3点的获胜,那么考虑随机变量落入某个区间的概率就变得有现实意义了,因此引入分布函数很有必要。
  2. 分布函数的意义

  分布函数F(x)F(x)在点xx处的函数值表示XX落在区间(−∞,x](−∞,x]内的概率,所以分布函数就是定义域为RR的一个普通函数,因此我们可以把概率问题转化为函数问题,从而可以利用普通的函数知识来研究概率问题,增大了概率的研究范围。

五:深度理解参考文献

  http://www.dataguru.cn/thread-150756-1-1.html
  https://www.zhihu.com/question/23022012
  https://www.zhihu.com/question/36853661
  https://www.zhihu.com/question/21911186
  http://wenku.baidu.com/view/823a0bb9f111f18582d05a14.html

你可能感兴趣的:(算法原理,分类算法专栏)