原文链接: https://www.cnblogs.com/gxl1995/p/7534171344218b3784f1beb90d621337.html
public class ArrayList extends AbstractList implements List, RandomAccess, Cloneable, java.io.Serializable {
/**
* 序列号
*/
private static final long serialVersionUID = 8683452581122892189L;
/**
* 默认容量
*/
private static final int DEFAULT_CAPACITY = 10;
/**
* 一个空数组
* 当用户指定该 ArrayList 容量为 0 时,返回该空数组
*/
private static final Object[] EMPTY_ELEMENTDATA = {};
/**
* 一个空数组实例
* - 当用户没有指定 ArrayList 的容量时(即调用无参构造函数),返回的是该数组==>刚创建一个 ArrayList 时,其内数据量为 0。
* - 当用户第一次添加元素时,该数组将会扩容,变成默认容量为 10(DEFAULT_CAPACITY) 的一个数组===>通过 ensureCapacityInternal() 实现
* 它与 EMPTY_ELEMENTDATA 的区别就是:该数组是默认返回的,而后者是在用户指定容量为 0 时返回
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
* ArrayList基于数组实现,用该数组保存数据, ArrayList 的容量就是该数组的长度
* - 该值为 DEFAULTCAPACITY_EMPTY_ELEMENTDATA 时,当第一次添加元素进入 ArrayList 中时,数组将扩容值 DEFAULT_CAPACITY(10)
*/
transient Object[] elementData; // non-private to simplify nested class access
/**
* ArrayList实际存储的数据数量
*/
private int size;
/**
* 创建一个初试容量的、空的ArrayList
* @param initialCapacity 初始容量
* @throws IllegalArgumentException 当初试容量值非法(小于0)时抛出
*/
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
/**
* 无参构造函数:
* - 创建一个 空的 ArrayList,此时其内数组缓冲区 elementData = {}, 长度为 0
* - 当元素第一次被加入时,扩容至默认容量 10
*/
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
/**
* 创建一个包含collection的ArrayList
* @param c 要放入 ArrayList 中的集合,其内元素将会全部添加到新建的 ArrayList 实例中
* @throws NullPointerException 当参数 c 为 null 时抛出异常
*/
public ArrayList(Collection extends E> c) {
//将集合转化成Object[]数组
elementData = c.toArray();
//把转化后的Object[]数组长度赋值给当前ArrayList的size,并判断是否为0
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
// 这句话意思是:c.toArray 可能不会返回 Object[],可以查看 java 官方编号为 6260652 的 bug
if (elementData.getClass() != Object[].class)
// 若 c.toArray() 返回的数组类型不是 Object[],则利用 Arrays.copyOf(); 来构造一个大小为 size 的 Object[] 数组
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// 替换空数组
this.elementData = EMPTY_ELEMENTDATA;
}
}
/**
* 调整elementData数组的长度,将数组缓冲区大小调整到实际 ArrayList 存储元素的大小,即 elementData = Arrays.copyOf(elementData, size);
* - 该方法由用户手动调用,以减少空间资源浪费的目的 ce.
*/
public void trimToSize() {
// modCount 是 AbstractList 的属性值:protected transient int modCount = 0;
/*modCount 用来记录 ArrayList 结构发生变化的次数。结构发生变化是指添加或者删除至少一个元素的所有操作,或者是调整内部数组的大小,仅仅只是设置元素的值不算结构发生变化。在进行序列化或者迭代等操作时,需要比较操作前后 modCount 是否改变,如果改变了需要抛出 ConcurrentModificationException。*/
modCount++;
// 当实际大小 < 数组缓冲区大小时
// 如调用默认构造函数后,刚添加一个元素,此时 elementData.length = 10,而 size = 1
// 通过这一步,可以使得空间得到有效利用,而不会出现资源浪费的情况
if (size < elementData.length) {
// 调整数组缓冲区 elementData,变为实际存储大小 Arrays.copyOf(elementData, size)
//先判断size是否为0,如果为0:实际存储为EMPTY_ELEMENTDATA,如果有数据就是Arrays.copyOf(elementData, size)
elementData = (size == 0)
? EMPTY_ELEMENTDATA
: Arrays.copyOf(elementData, size);
}
}
/**
* 指定 ArrayList 的容量
* @param minCapacity 指定的最小容量
*/
public void ensureCapacity(int minCapacity) {
// 最小扩充容量,默认是 10
//这句就是:判断是不是空的ArrayList,如果是的最小扩充容量10,否则最小扩充量为0
//上面无参构造函数创建后,当元素第一次被加入时,扩容至默认容量 10,就是靠这句代码
int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
? 0
: DEFAULT_CAPACITY;
// 若用户指定的最小容量 > 最小扩充容量,则以用户指定的为准,否则还是 10
if (minCapacity > minExpand) {
ensureExplicitCapacity(minCapacity);
}
}
/**
* 私有方法:明确 ArrayList 的容量,提供给本类使用的方法
* - 用于内部优化,保证空间资源不被浪费:尤其在 add() 方法添加时起效
* @param minCapacity 指定的最小容量
*/
private void ensureCapacityInternal(int minCapacity) {
// 若 elementData == {},则取 minCapacity 为 默认容量和参数 minCapacity 之间的最大值
// 注:ensureCapacity() 是提供给用户使用的方法,在 ArrayList 的实现中并没有使用
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity= Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
/**
* 私有方法:明确 ArrayList 的容量
* - 用于内部优化,保证空间资源不被浪费:尤其在 add() 方法添加时起效
* @param minCapacity 指定的最小容量
*/
private void ensureExplicitCapacity(int minCapacity) {
// 将“修改统计数”+1,该变量主要是用来实现fail-fast机制的
modCount++;
// 防止溢出代码:确保指定的最小容量 > 数组缓冲区当前的长度
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
/**
* 数组缓冲区最大存储容量
* - 一些 VM 会在一个数组中存储某些数据--->为什么要减去 8 的原因
* - 尝试分配这个最大存储容量,可能会导致 OutOfMemoryError(当该值 > VM 的限制时)
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* 私有方法:扩容,以确保 ArrayList 至少能存储 minCapacity 个元素
* - 扩容计算:newCapacity = oldCapacity + (oldCapacity >> 1); 扩充当前容量的1.5倍
* @param minCapacity 指定的最小容量
*/
private void grow(int minCapacity) {
// 防止溢出代码
int oldCapacity = elementData.length;
// 运算符 >> 是带符号右移. 如 oldCapacity = 10,则 newCapacity = 10 + (10 >> 1) = 10 + 5 = 15
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0) // 若 newCapacity 依旧小于 minCapacity
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0) // 若 newCapacity 大于最大存储容量,则进行大容量分配
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
/**
* 私有方法:大容量分配,最大分配 Integer.MAX_VALUE
* @param minCapacity
*/
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
/**
* 返回ArrayList实际存储的元素数量
*/
public int size() {
return size;
}
/**
* ArrayList是否有元素
*/
public boolean isEmpty() {
return size == 0;
}
/**
* 是否包含o元素
*/
public boolean contains(Object o) {
// 根据 indexOf() 的值(索引值)来判断,大于等于 0 就包含
// 注意:等于 0 的情况不能漏,因为索引号是从 0 开始计数的
return indexOf(o) >= 0;
}
/**
* 顺序查找,返回元素的最低索引值(最首先出现的索引位置)
* @return 存在?最低索引值:-1
*/
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* 逆序查找,返回元素的最低索引值(最首先出现的索引位置)
* @return 存在?最低索引值:-1
*/
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* 实现的有Cloneable接口,深度复制:对拷贝出来的 ArrayList 对象的操作,不会影响原来的 ArrayList
* @return 一个克隆的 ArrayList 实例(深度复制的结果)
*/
public Object clone() {
try {
// Object 的克隆方法:会复制本对象及其内所有基本类型成员和 String 类型成员,但不会复制对象成员、引用对象
ArrayList> v = (ArrayList>) super.clone();
// 对需要进行复制的引用变量,进行独立的拷贝:将存储的元素移入新的 ArrayList 中
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
/**
* 返回 ArrayList 的 Object 数组
* - 包含 ArrayList 的所有储存元素
* - 对返回的该数组进行操作,不会影响该 ArrayList(相当于分配了一个新的数组)==>该操作是安全的
* - 元素存储顺序与 ArrayList 中的一致
*/
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
/**
* 返回 ArrayList 元素组成的数组
* @param a 需要存储 list 中元素的数组
* 若 a.length >= list.size,则将 list 中的元素按顺序存入 a 中,然后 a[list.size] = null, a[list.size + 1] 及其后的元素依旧是 a 的元素
* 否则,将返回包含list 所有元素且数组长度等于 list 中元素个数的数组
* 注意:若 a 中本来存储有元素,则 a 会被 list 的元素覆盖,且 a[list.size] = null
* @return
* @throws ArrayStoreException 当 a.getClass() != list 中存储元素的类型时
* @throws NullPointerException 当 a 为 null 时
*/
@SuppressWarnings("unchecked")
public T[] toArray(T[] a) {
// 若数组a的大小 < ArrayList的元素个数,则新建一个T[]数组,
// 数组大小是"ArrayList的元素个数",并将“ArrayList”全部拷贝到新数组中
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
// 若数组a的大小 >= ArrayList的元素个数,则将ArrayList的全部元素都拷贝到数组a中。
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
/**
* 获取指定位置上的元素,从0开始
*/
public E get(int index) {
rangeCheck(index);//检查是否越界
return elementData(index);
}
/**
* 检查数组是否在界线内
*/
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* 返回在索引为 index 的元素:数组的随机访问
* - 默认包访问权限
*
* 封装粒度很强,连数组随机取值都封装为一个方法。
* 主要是避免每次取值都要强转===>设置值就没有封装成一个方法,因为设置值不需要强转
* @param index
* @return
*/
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
/**
* 设置 index 位置元素的值
* @param index 索引值
* @param element 需要存储在 index 位置的元素值
* @return 替换前在 index 位置的元素值
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E set(int index, E element) {
rangeCheck(index);//越界检查
E oldValue = elementData(index);//获取旧数值
elementData[index] = element;
return oldValue;
}
/**
*增加指定的元素到ArrayList的最后位置
* @param e 要添加的元素
* @return
*/
public boolean add(E e) {
// 确定ArrayList的容量大小---严谨
// 注意:size + 1,保证资源空间不被浪费,
// ☆☆☆按当前情况,保证要存多少个元素,就只分配多少空间资源
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
/**
*
*在这个ArrayList中的指定位置插入指定的元素,
* - 在指定位置插入新元素,原先在 index 位置的值往后移动一位
* @param index 指定位置
* @param element 指定元素
* @throws IndexOutOfBoundsException
*/
public void add(int index, E element) {
rangeCheckForAdd(index);//判断角标是否越界
//看上面的,size+1,保证资源空间不浪费,按当前情况,保证要存多少元素,就只分配多少空间资源
ensureCapacityInternal(size + 1); // Increments modCount!!
//第一个是要复制的数组,第二个是从要复制的数组的第几个开始,
// 第三个是复制到那,四个是复制到的数组第几个开始,最后一个是复制长度
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
/**
* 移除指定位置的元素
* index 之后的所有元素依次左移一位
* @param index 指定位置
* @return 被移除的元素
* @throws IndexOutOfBoundsException
*/
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;//要移动的长度
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
// 将最后一个元素置空
elementData[--size] = null;
return oldValue;
}
/**
* 移除list中指定的第一个元素(符合条件索引最低的)
* 如果list中不包含这个元素,这个list不会改变
* 如果包含这个元素,index 之后的所有元素依次左移一位
* @param o 这个list中要被移除的元素
* @return
*/
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
/**
* 快速删除第 index 个元素
* 和public E remove(int index)相比
* 私有方法,跳过检查,不返回被删除的值
* @param index 要删除的脚标
*/
private void fastRemove(int index) {
modCount++;//这个地方改变了modCount的值了
int numMoved = size - index - 1;//移动的个数
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; //将最后一个元素清除
}
/**
* 移除list中的所有元素,这个list表将在调用之后置空
* - 它会将数组缓冲区所以元素置为 null
* - 清空后,我们直接打印 list,却只会看见一个 [], 而不是 [null, null, ….] ==> toString() 和 迭代器进行了处理
*/
public void clear() {
modCount++;
// clear to let GC do its work
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
/**
* 将一个集合的所有元素顺序添加(追加)到 lits 末尾
* - ArrayList 是线程不安全的。
* - 该方法没有加锁,当一个线程正在将 c 中的元素加入 list 中,但同时有另一个线程在更改 c 中的元素,可能会有问题
* @param c 要追加的集合
* @return true ? list 元素个数有改变时,成功:失败
* @throws NullPointerException 当 c 为 null 时
*/
public boolean addAll(Collection extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;//要添加元素的个数
ensureCapacityInternal(size + numNew); //扩容
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
/**
* 从 List 中指定位置开始插入指定集合的所有元素,
* -list中原来位置的元素向后移
* - 并不会覆盖掉在 index 位置原有的值
* - 类似于 insert 操作,在 index 处插入 c.length 个元素(原来在此处的 n 个元素依次右移)
* @param index 插入指定集合的索引
* @param c 要添加的集合
* @return ? list 元素个数有改变时,成功:失败
* @throws IndexOutOfBoundsException {@inheritDoc}
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(int index, Collection extends E> c) {
rangeCheckForAdd(index);
Object[] a = c.toArray();//是将list直接转为Object[] 数组
int numNew = a.length; //要添加集合的元素数量
ensureCapacityInternal(size + numNew); // 扩容
int numMoved = size - index;//list中要移动的数量
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
/**
* 移除list中 [fromIndex,toIndex) 的元素
* - 从toIndex之后(包括toIndex)的元素向前移动(toIndex-fromIndex)个元素
* -如果(toIndex==fromIndex)这个操作没有影响
* @throws IndexOutOfBoundsException if {@code fromIndex} or
* {@code toIndex} is out of range
* ({@code fromIndex < 0 ||
* fromIndex >= size() ||
* toIndex > size() ||
* toIndex < fromIndex})
*/
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;//要移动的数量
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// 删除后,list 的长度
int newSize = size - (toIndex-fromIndex);
//将失效元素置空
for (int i = newSize; i < size; i++) {
elementData[i] = null;
}
size = newSize;
}
/**
* 添加时检查索引是否越界
*/
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* 构建IndexOutOfBoundsException详细消息
*/
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
/**
* 移除list中指定集合包含的所有元素
* @param c 要从list中移除的指定集合
* @return {@code true} if this list changed as a result of the call
* @throws ClassCastException 如果list中的一个元素的类和指定集合不兼容
* (optional)
* @throws NullPointerException 如果list中包含一个空元素,而指定集合中不允许有空元素
*/
public boolean removeAll(Collection> c) {
Objects.requireNonNull(c);//判断集合是否为空,如果为空报NullPointerException
//批量移除c集合的元素,第二个参数:是否采补集
return batchRemove(c, false);
}
/**
* Retains only the elements in this list that are contained in the
* specified collection. In other words, removes from this list all
* of its elements that are not contained in the specified collection.
*
* @param c collection containing elements to be retained in this list
* @return {@code true} if this list changed as a result of the call
* @throws ClassCastException if the class of an element of this list
* is incompatible with the specified collection
* (optional)
* @throws NullPointerException if this list contains a null element and the
* specified collection does not permit null elements
* (optional),
* or if the specified collection is null
* @see Collection#contains(Object)
*/
public boolean retainAll(Collection> c) {
Objects.requireNonNull(c);
return batchRemove(c, true);
}
/**
* 批处理移除
* @param c 要移除的集合
* @param complement 是否是补集
* 如果true:移除list中除了c集合中的所有元素
* 如果false:移除list中 c集合中的元素
*/
private boolean batchRemove(Collection> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
//遍历数组,并检查这个集合是否对应值,移动要保留的值到数组前面,w最后值为要保留的值得数量
//如果保留:将相同元素移动到前段,如果不保留:将不同的元素移动到前段
for (; r < size; r++)
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
//最后 r=size 注意for循环中最后的r++
// w=保留元素的大小
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
//r!=size表示可能出错了,
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
//如果w==size:表示全部元素都保留了,所以也就没有删除操作发生,所以会返回false;反之,返回true,并更改数组
//而 w!=size;即使try抛出异常,也能正常处理异常抛出前的操作,因为w始终要为保留的前半部分,数组也不会因此乱序
if (w != size) {
// clear to let GC do its work
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
}
/**
* 私有方法
* 将ArrayList实例序列化
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// 写入所有元素数量的任何隐藏的东西
int expectedModCount = modCount;
s.defaultWriteObject();
//写入clone行为的容量大小
s.writeInt(size);
//以合适的顺序写入所有的元素
for (int i=0; i 0) {
ensureCapacityInternal(size);
Object[] a = elementData;
// 从输入流中将“所有的元素值”读出
for (int i=0; i listIterator(int index) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index);
return new ListItr(index);
}
/**
* 返回从0索引开始到结束的带有元素的list迭代器
*/
public ListIterator listIterator() {
return new ListItr(0);
}
/**
* 以一种合适的排序返回一个iterator到元素的结尾
*/
public Iterator iterator() {
return new Itr();
}
/**
* Itr是AbstractList.Itr的优化版本
* 为什么会报ConcurrentModificationException异常?
* 1. Iterator 是工作在一个独立的线程中,并且拥有一个 mutex 锁。
* 2. Iterator 被创建之后会建立一个指向原来对象的单链索引表,当原来的对象数量发生变化时,
* 这个索引表的内容不会同步改变,所以当索引指针往后移动的时候就找不到要迭代的对象,
* 3. 所以按照 fail-fast 原则 Iterator 会马上抛出 java.util.ConcurrentModificationException 异常。
* 4. 所以 Iterator 在工作的时候是不允许被迭代的对象被改变的。
* 但你可以使用 Iterator 本身的方法 remove() 来删除对象,
* 5. Iterator.remove() 方法会在删除当前迭代对象的同时维护索引的一致性。
*/
private class Itr implements Iterator {
int cursor; // 下一个元素返回的索引
int lastRet = -1; // 最后一个元素返回的索引 -1 if no such
int expectedModCount = modCount;
/**
* 是否有下一个元素
*/
public boolean hasNext() {
return cursor != size;
}
/**
* 返回list中的值
*/
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;//i当前元素的索引
if (i >= size)//第一次检查:角标是否越界越界
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)//第二次检查,list集合中数量是否发生变化
throw new ConcurrentModificationException();
cursor = i + 1; //cursor 下一个元素的索引
return (E) elementData[lastRet = i];//最后一个元素返回的索引
}
/**
* 移除集合中的元素
*/
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
//移除list中的元素
ArrayList.this.remove(lastRet);
//由于cursor比lastRet大1,所有这行代码是指指针往回移动一位
cursor = lastRet;
//将最后一个元素返回的索引重置为-1
lastRet = -1;
//重新设置了expectedModCount的值,避免了ConcurrentModificationException的产生
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
/**
* jdk 1.8中使用的方法
* 将list中的所有元素都给了consumer,可以使用这个方法来取出元素
*/
@Override
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer super E> consumer) {
Objects.requireNonNull(consumer);
final int size = ArrayList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
}
/**
* 检查modCount是否等于expectedModCount
* 在 迭代时list集合的元素数量发生变化时会造成这两个值不相等
*/
final void checkForComodification() {
//当expectedModCount和modCount不相等时,就抛出ConcurrentModificationException
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
/*------------------------------------- Itr 结束 -------------------------------------------*/
/**
* AbstractList.ListItr 的优化版本
* ListIterator 与普通的 Iterator 的区别:
* - 它可以进行双向移动,而普通的迭代器只能单向移动
* - 它可以添加元素(有 add() 方法),而后者不行
*/
private class ListItr extends Itr implements ListIterator {
ListItr(int index) {
super();
cursor = index;
}
/**
* 是否有前一个元素
*/
public boolean hasPrevious() {
return cursor != 0;
}
/**
* 获取下一个元素的索引
*/
public int nextIndex() {
return cursor;
}
/**
* 获取 cursor 前一个元素的索引
* - 是 cursor 前一个,而不是当前元素前一个的索引。
* - 若调用 next() 后马上调用该方法,则返回的是当前元素的索引。
* - 若调用 next() 后想获取当前元素前一个元素的索引,需要连续调用两次该方法。
*/
public int previousIndex() {
return cursor - 1;
}
/**
* 返回 cursor 前一元素
*/
@SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)//第一次检查:索引是否越界
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)//第二次检查
throw new ConcurrentModificationException();
cursor = i;//cursor回移
return (E) elementData[lastRet = i];//返回 cursor 前一元素
}
/**
* 将数组的最后一个元素,设置成元素e
*/
public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
//将数组最后一个元素,设置成元素e
ArrayList.this.set(lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
/**
* 添加元素
*/
public void add(E e) {
checkForComodification();
try {
int i = cursor;//当前元素的索引后移一位
ArrayList.this.add(i, e);//在i位置上添加元素e
cursor = i + 1;//cursor后移一位
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
/*------------------------------------- ListItr 结束 -------------------------------------------*/
/**
* 获取从 fromIndex 到 toIndex 之间的子集合(左闭右开区间)
* - 若 fromIndex == toIndex,则返回的空集合
* - 对该子集合的操作,会影响原有集合
* - 当调用了 subList() 后,若对原有集合进行删除操作(删除subList 中的首个元素)时,会抛出异常 java.util.ConcurrentModificationException
* 这个和Itr的原因差不多由于modCount发生了改变,对集合的操作需要用子集合提供的方法
* - 该子集合支持所有的集合操作
*
* 原因看 SubList 内部类的构造函数就可以知道
* @throws IndexOutOfBoundsException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public List subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, 0, fromIndex, toIndex);
}
/**
* 检查传入索引的合法性
* 注意[fromIndex,toIndex)
*/
static void subListRangeCheck(int fromIndex, int toIndex, int size) {
if (fromIndex < 0)
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
if (toIndex > size)//由于是左闭右开的,所以toIndex可以等于size
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > toIndex(" + toIndex + ")");
}
/**
* 私有类
* 嵌套内部类:也实现了 RandomAccess,提供快速随机访问特性
* 这个是通过映射来实现的
*/
private class SubList extends AbstractList implements RandomAccess {
private final AbstractList parent; //实际传入的是ArrayList本身
private final int parentOffset; // 相对于父集合的偏移量,其实就是 fromIndex
private final int offset; // 偏移量,默认是 0
int size; //SubList中的元素个数
SubList(AbstractList parent,
int offset, int fromIndex, int toIndex) {
// 看到这部分,就理解为什么对 SubList 的操作,会影响父集合---> 因为子集合的处理,仅仅是给出了一个映射到父集合相应区间的引用
// 再加上 final,的修饰,就能明白为什么进行了截取子集合操作后,父集合不能删除 SubList 中的首个元素了--->offset 不能更改
this.parent = parent;
this.parentOffset = fromIndex;//原来的偏移量
this.offset = offset + fromIndex;//加了offset的偏移量
this.size = toIndex - fromIndex;
this.modCount = ArrayList.this.modCount;
}
/**
* 设置新值,返回旧值
*/
public E set(int index, E e) {
rangeCheck(index);//越界检查
checkForComodification();//检查
//从这一条语句可以看出:对子类添加元素,是直接操作父类添加的
E oldValue = ArrayList.this.elementData(offset + index);
ArrayList.this.elementData[offset + index] = e;
return oldValue;
}
/**
* 获取指定索引的元素
*/
public E get(int index) {
rangeCheck(index);
checkForComodification();
return ArrayList.this.elementData(offset + index);
}
/**
* 返回元素的数量
*/
public int size() {
checkForComodification();
return this.size;
}
/**
* 指定位置添加元素
*/
public void add(int index, E e) {
rangeCheckForAdd(index);
checkForComodification();
//从这里可以看出,先通过index拿到在原来数组上的索引,再调用父类的添加方法实现添加
parent.add(parentOffset + index, e);
this.modCount = parent.modCount;
this.size++;
}
/**
* 移除指定位置的元素
*/
public E remove(int index) {
rangeCheck(index);
checkForComodification();
E result = parent.remove(parentOffset + index);
this.modCount = parent.modCount;
this.size--;
return result;
}
/**
* 移除subList中的[fromIndex,toIndex)之间的元素
*/
protected void removeRange(int fromIndex, int toIndex) {
checkForComodification();
parent.removeRange(parentOffset + fromIndex,
parentOffset + toIndex);
this.modCount = parent.modCount;
this.size -= toIndex - fromIndex;
}
/**
* 添加集合中的元素到subList结尾
* @param c
* @return
*/
public boolean addAll(Collection extends E> c) {
//调用父类的方法添加集合元素
return addAll(this.size, c);
}
/**
* 在subList指定位置,添加集合中的元素
*/
public boolean addAll(int index, Collection extends E> c) {
rangeCheckForAdd(index);//越界检查
int cSize = c.size();
if (cSize==0)
return false;
checkForComodification();
//调用父类的方法添加
parent.addAll(parentOffset + index, c);
this.modCount = parent.modCount;
this.size += cSize;
return true;
}
/**
* subList中的迭代器
*/
public Iterator iterator() {
return listIterator();
}
/**
* 返回从指定索引开始到结束的带有元素的list迭代器
*/
public ListIterator listIterator(final int index) {
checkForComodification();
rangeCheckForAdd(index);
final int offset = this.offset;//偏移量
return new ListIterator() {
int cursor = index;
int lastRet = -1;//最后一个元素的下标
int expectedModCount = ArrayList.this.modCount;
public boolean hasNext() {
return cursor != SubList.this.size;
}
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= SubList.this.size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[offset + (lastRet = i)];
}
public boolean hasPrevious() {
return cursor != 0;
}
@SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[offset + (lastRet = i)];
}
//jdk8的方法
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer super E> consumer) {
Objects.requireNonNull(consumer);
final int size = SubList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[offset + (i++)]);
}
// update once at end of iteration to reduce heap write traffic
lastRet = cursor = i;
checkForComodification();
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor - 1;
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
SubList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.set(offset + lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void add(E e) {
checkForComodification();
try {
int i = cursor;
SubList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification() {
if (expectedModCount != ArrayList.this.modCount)
throw new ConcurrentModificationException();
}
};
}
//subList的方法,同样可以再次截取List同样是使用映射方式
public List subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, offset, fromIndex, toIndex);
}
private void rangeCheck(int index) {
if (index < 0 || index >= this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private void rangeCheckForAdd(int index) {
if (index < 0 || index > this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+this.size;
}
private void checkForComodification() {
if (ArrayList.this.modCount != this.modCount)
throw new ConcurrentModificationException();
}
/**
* subList方法:获取一个分割器
* - fail-fast
* - late-binding:后期绑定
* - java8 开始提供
*/
public Spliterator spliterator() {
checkForComodification();
return new ArrayListSpliterator(ArrayList.this, offset,
offset + this.size, this.modCount);
}
}
/*------------------SubList结束-------------------------------*/
//1.8方法
@Override
public void forEach(Consumer super E> action) {
Objects.requireNonNull(action);
final int expectedModCount = modCount;
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) this.elementData;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
action.accept(elementData[i]);//这里将所有元素都接受到Consumer中了,所有可以使用1.8中的方法直接获取每一个元素
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
/**
* 获取一个分割器
* - fail-fast 机制和itr,subList一个机制
* - late-binding:后期绑定
* - java8 开始提供
* @return a {@code Spliterator} over the elements in this list
* @since 1.8
*/
@Override
public Spliterator spliterator() {
return new ArrayListSpliterator<>(this, 0, -1, 0);
}
/** Index-based split-by-two, lazily initialized Spliterator */
// 基于索引的、二分的、懒加载的分割器
static final class ArrayListSpliterator implements Spliterator {
//用于存放ArrayList对象
private final ArrayList list;
//起始位置(包含),advance/split操作时会修改
private int index;
//结束位置(不包含),-1 表示到最后一个元素
private int fence;
//用于存放list的modCount
private int expectedModCount;
//默认的起始位置是0,默认的结束位置是-1
ArrayListSpliterator(ArrayList list, int origin, int fence,
int expectedModCount) {
this.list = list; // OK if null unless traversed
this.index = origin;
this.fence = fence;
this.expectedModCount = expectedModCount;
}
//在第一次使用时实例化结束位置
private int getFence() {
int hi; // (a specialized variant appears in method forEach)
ArrayList lst;
//fence<0时(第一次初始化时,fence才会小于0):
if ((hi = fence) < 0) {
//如果list集合中没有元素
if ((lst = list) == null)
//list 为 null时,fence=0
hi = fence = 0;
else {
//否则,fence = list的长度。
expectedModCount = lst.modCount;
hi = fence = lst.size;
}
}
return hi;
}
//分割list,返回一个新分割出的spliterator实例
//相当于二分法,这个方法会递归
//1.ArrayListSpliterator本质上还是对原list进行操作,只是通过index和fence来控制每次处理范围
//2.也可以得出,ArrayListSpliterator在遍历元素时,不能对list进行结构变更操作,否则抛错。
public ArrayListSpliterator trySplit() {
//hi:结束位置(不包括) lo:开始位置 mid:中间位置
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
//当lo>=mid,表示不能在分割,返回null
//当lo= mid) ? null : // divide range in half unless too small
new ArrayListSpliterator(list, lo, index = mid,
expectedModCount);
}
//返回true 时,只表示可能还有元素未处理
//返回false 时,没有剩余元素处理了。。。
public boolean tryAdvance(Consumer super E> action) {
if (action == null)
throw new NullPointerException();
int hi = getFence(), i = index;
if (i < hi) {
index = i + 1;//角标前移
@SuppressWarnings("unchecked") E e = (E)list.elementData[i];//取出元素
action.accept(e);//给Consumer类函数
if (list.modCount != expectedModCount)//遍历时,结构发生变更,抛错
throw new ConcurrentModificationException();
return true;
}
return false;
}
//顺序遍历处理所有剩下的元素
//Consumer类型,传入值处理
public void forEachRemaining(Consumer super E> action) {
int i, hi, mc; // hi list的长度 )
ArrayList lst; Object[] a;//数组,元素集合
if (action == null)
throw new NullPointerException();
//如果list不为空 而且 list中的元素不为空
if ((lst = list) != null && (a = lst.elementData) != null) {
//当fence<0时,表示fence和expectedModCount未初始化,可以思考一下这里能否直接调用getFence(),嘿嘿?
if ((hi = fence) < 0) {
mc = lst.modCount;
hi = lst.size;//由于上面判断过了,可以直接将lst大小给hi(不包括)
}
else
mc = expectedModCount;
if ((i = index) >= 0 && (index = hi) <= a.length) {
for (; i < hi; ++i) {//将所有元素给Consumer
@SuppressWarnings("unchecked") E e = (E) a[i];
action.accept(e);
}
if (lst.modCount == mc)
return;
}
}
throw new ConcurrentModificationException();
}
//估算大小
public long estimateSize() {
return (long) (getFence() - index);
}
//打上特征值:、可以返回size
public int characteristics() {
//命令,大小,子大小
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
}
/**
* 1.8方法
* 根据Predicate条件来移除元素
* 将所有元素依次根据filter的条件判断
* Predicate 是 传入元素 返回 boolean 类型的接口
*/
@Override
public boolean removeIf(Predicate super E> filter) {
Objects.requireNonNull(filter);
// figure out which elements are to be removed
// any exception thrown from the filter predicate at this stage
// will leave the collection unmodified
int removeCount = 0;
final BitSet removeSet = new BitSet(size);
final int expectedModCount = modCount;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
@SuppressWarnings("unchecked")
final E element = (E) elementData[i];
if (filter.test(element)) {//如果元素满足条件
removeSet.set(i);//将满足条件的角标存放到set中
removeCount++;//移除set的数量
}
}
if (modCount != expectedModCount) {//判断是否外部修改了
throw new ConcurrentModificationException();
}
// shift surviving elements left over the spaces left by removed elements
final boolean anyToRemove = removeCount > 0;//如果有移除元素
if (anyToRemove) {
final int newSize = size - removeCount;//新大小
//i:[0,size) j[0,newSize)
for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
i = removeSet.nextClearBit(i);//i是[0,size)中不是set集合中的角标
elementData[j] = elementData[i];//新元素
}
//将空元素置空
for (int k=newSize; k < size; k++) {
elementData[k] = null; // Let gc do its work
}
this.size = newSize;
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
return anyToRemove;
}
/**
* UnaryOperator 接受一个什么类型的参数,返回一个什么类型的参数
* 对数组中的每一个元素进行一系列的操作,返回同样的元素,
* 如果 List lists 将list集合中的每一个student姓名改为张三
* 使用这个方法就非常方便
* @param operator
*/
@Override
@SuppressWarnings("unchecked")
public void replaceAll(UnaryOperator operator) {
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
//取出每一个元素给operator的apply方法
elementData[i] = operator.apply((E) elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
/**
* 根据 Comparator条件进行排序
* Comparator(e1,e2) 返回 boolean类型
*/
@Override
@SuppressWarnings("unchecked")
public void sort(Comparator super E> c) {
final int expectedModCount = modCount;
Arrays.sort((E[]) elementData, 0, size, c);
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
}