机器学习——LightGBM

1. LightGBM概述

LightGBM(Light Gradient Boosting Machine)是一个基于决策树算法的快速的、分布式的、高性能 gradient boosting(GBDT、GBRT、GBM 或 MART)框架,可被用于排行、分类以及其他许多机器学习任务中。

2. LightGBM的起源

GBDT 虽然是个强力的模型,但却有着一个致命的缺陷,不能用类似 mini batch 的方式来训练,需要对数据进行无数次的遍历。如果想要速度,就需要把数据都预加载在内存中,但这样数据就会受限于内存的大小;如果想要训练更多的数据,就要使用外存版本的决策树算法。虽然外存算法也有较多优化,SSD 也在普及,但在频繁的 IO 下,速度还是比较慢的。为了能让 GBDT 高效地用上更多的数据,我们把思路转向了分布式 GBDT, 然后就有了 LightGBM。

3. LightGBM的一些相关概念

3.1【LightGBM】直方图优化算法(Histogram)

histogram 算法,则只需要(#data* #features * 1Bytes)的内存消耗,仅为 pre-sorted算法的1/8。因为 histogram 算法仅需要存储 featurebin value (离散化后的数值),不需要原始的 feature value,也不用排序,而 bin value 用 uint8_t (256bins) 的类型一般也就足够了。

histogram 做差加速。一个容易观察到的现象:一个叶子的直方图可以由它的父亲节点的直方图与它兄弟的直方图做差得到。通常构造直方图,需要遍历该叶子上的所有数据,但直方图做差仅需遍历直方图的 k 个桶。利用这个方法,LightGBM 可以在构造一个叶子的直方图后,可以用非常微小的代价得到它兄弟叶子的直方图,在速度上可以提升一倍。

3.2【XGB】预排序算法(pre-sorted)

XGBoost中采用**预排序(pre-sorted)**的方法,计算过程当中是按照value的排序,逐个数据样本来计算划分收益,这样的算法能够精确的找到最佳划分值

Pre-sorted 算法需要的内存约是训练数据的两倍(2* #data* #features* 4Bytes),它需要用32位浮点来保存 feature value,并且对每一列特征,都需要一个额外的排好序的索引,这也需要32位的存储空间

3.3【LightGBM】按叶子生长算法(leaf-wise)

leaf-wise则是一种更为高效的策略,每次从当前所有叶子中,找到分裂增益最大(一般也是数据量最大)的一个叶子,然后分裂,如此循环。因此同 level-wise 相比,在分裂次数相同的情况下,leaf-wise 可以降低更多的误差,得到更好的精度。leaf-wise 的缺点是可能会长出比较深的决策树,产生过拟合。因此 LightGBM 在leaf-wise 之上增加了一个最大深度的限制,在保证高效率的同时防止过拟合。

3.4【XGB】按层生长(level-wise)

(level-wise) 的决策树生长策略,而使用了带有深度限制的按叶子生长 (leaf-wise) 算法。 level-wise 过一次数据可以同时分裂同一层的叶子,容易进行多线程优化,不容易过拟合。但实际上level-wise是一种低效的算法,因为它不加区分的对待同一层的叶子,带来了很多没必要的开销。因为实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。

两者的优缺点

3.5 通信代价

GBDT 虽然是个强力的模型,但却有着一个致命的缺陷,不能用类似 mini batch 的方式来训练,需要对数据进行无数次的遍历。如果想要速度,就需要把数据都预加载在内存中,但这样数据就会受限于内存的大小;如果想要训练更多的数据,就要使用外存版本的决策树算法。虽然外存算法也有较多优化,SSD 也在普及,但在频繁的 IO 下,速度还是比较慢的。

为了能让 GBDT 高效地用上更多的数据,我们把思路转向了分布式 GBDT, 然后就有了 LightGBM。设计的思路主要是两点:

  1. 单个机器在不牺牲速度的情况下,尽可能多地用上更多的数据;
  2. 多机并行的时候,通信的代价尽可能地低,并且在计算上可以做到线性加速。

基于这两个需求,LightGBM 选择了基于 histogram 的决策树算法。相比于另一个主流的算法 pre-sorted(如 xgboost 中的 exact 算法),histogram 在内存消耗和计算代价上都有不少优势。

顺序访问梯度

预排序算法中有两个频繁的操作会导致cache-miss,也就是缓存消失(对速度的影响很大,特别是数据量很大的时候,顺序访问比随机访问的速度快4倍以上 )。

对梯度的访问:在计算增益的时候需要利用梯度,对于不同的特征,访问梯度的顺序是不一样的,并且是随机的
对于索引表的访问:预排序算法使用了行号和叶子节点号的索引表,防止数据切分的时候对所有的特征进行切分。同访问梯度一样,所有的特征都要通过访问这个索引表来索引。
这两个操作都是随机的访问,会给系统性能带来非常大的下降。

LightGBM使用的直方图算法能很好的解决这类问题。首先。对梯度的访问,因为不用对特征进行排序,同时,所有的特征都用同样的方式来访问,所以只需要对梯度访问的顺序进行重新排序,所有的特征都能连续的访问梯度。并且直方图算法不需要把数据id到叶子节点号上(不需要这个索引表,没有这个缓存消失问题)

支持类别特征

传统的机器学习一般不能支持直接输入类别特征,需要先转化成多维的0-1特征,这样无论在空间上还是时间上效率都不高。LightGBM通过更改决策树算法的决策规则,直接原生支持类别特征,不需要转化,提高了近8倍的速度。
机器学习——LightGBM_第1张图片

CatBoost

CatBoost 算法的设计初衷是为了更好的处理 GBDT 特征中的 categorical features 。
在处理 GBDT 特征中的 categorical features 的时候,最简单的方法是用 categorical feature 对应的标签的平均值来替换。在决策树中,标签平均值将作为节点分裂的标准。这种方法被称为 Greedy Target-based Statistics , 简称 Greedy TBS,这种方法有一个显而易见的缺陷,就是通常特征比标签包含更多的信息,如果强行用标签的平均值来表示特征的话,当训练数据集和测试数据集数据结构和分布不一样的时候会出问题(条件偏移问题)。
一个标准的改进 Greedy TBS的方式是添加先验分布项,这样可以减少噪声和低频率数据对于数据分布的影响:
x ^ k i = ∑ j = 1 n Π { x j i = x k i } ⋅ y j + a P ∑ j = 1 n Π { x j i = x k i } + a \hat x_k^i = \frac{\sum_{j=1}^n\Pi\{x_j^i=x_k^i\}\cdot y_j + aP }{\sum_{j=1}^n\Pi\{x_j^i=x_k^i\}+ a} x^ki=j=1nΠ{xji=xki}+aj=1nΠ{xji=xki}yj+aP
在这里插入图片描述
其中 P 是添加的先验项,a 通常是大于 0 的权重系数。
为了解决条件偏移问题,常用的方法例如可以将数据集合分为两部分,在第一个部分上对数据的特征进行类似 Greedy TBS 的处理,而在第二个数据集合上进行训练。CatBoost 参考了在线学习的方法,首先对训练书进行了随机的重排列,然后选择 作为训练样本,而整个的数据集合做为测试样本。

你可能感兴趣的:(机器学习算法)