单纯基于numpy实现的神经网络框架 : numpy-net

numpynet

Project url: https://github.com/horcham/numpy-net/

中文概述

仅使用基本的矩阵运算(工具为numpy), 和合适的数据结构, 自主实现了深度学习框架(名为numpy-net).
其支持全连接、卷积、池化、Batch Normalization、dropout、Residual Block等运算, Momentum、AdaDelta、Adam 等优化器, 并使用该框架实现 LeNet, AlexNet(without LRN),VGG16, ResNet18等经典网络结构, 并使用 MNIST 进行测试, LeNet准确率为 97.11。该项目的特点是类似keras的编程风格, 自定义operation和自动求导.
Numpy-net 的实现思路: 定义 Variable 类以存储节点的数据、梯度、学习率等数据, 并将 Variable 类作为网络的数据单元;定义 Op 通用运算类及其子类(如 conv2d,BatchNorm等)、Layer 通用激活函数类及其子类(如 ReluActivator 等)、Block 通用块类及其残差块类(如 ResBlock 等)、Loss 损失函数类及其子类(如 softmax 等)的初始化方法以及前向计算和反向求导规则;定义 Graph 类,通过调用添加上述类来初始化网络结构序列和优化器,通过定义并调用 Graph 类的前向计算,令网络从前往后对每个计算节点(如 Op)调用前向计算,并构造新的 Variable 数据节点存储当前结果,并用此 Variable 作为下一个 Op 的输入,到末尾损失函数类计算损失及并通过求导规则计算导数,定义并调用 Graph 类的反向求导,令网络从后往前的对每个计算节点调用求导规则,并将梯度存储在输入该计算节点的 Op 中;反向传播结束,定义并调用 Graph 类的更新,对每个需要更新参数的 Variable 依次调用优化器更新参数,至此 numpy-net的训练过程完成。

About numpynet

Numpynet is a neural networks framework implemented by numpy.
Its coding style is like Gluon of mxnet. It can do derivation automatically via definition of operation’s backward function.
Now this framework supports BP network and CNN.


Performance

dataset model learning rate epoch accuracy
MNIST LeNet 1e-3 30 0.9711

Support Component

  • Variable:

    • Variable(np.array, lr=0)
    • Placeholder()
  • Initial

    • Uniform: Uniform(shape)
    • Normal: Normal(shape)
  • Operation

    • Add: __init__(), forward(X1, X2)
    • Identity __init__(), forward(X1)
    • Dot __init__(), forward(X1, X2)
    • Flatten __init__(), forward(X1)
    • Conv2d __init__(padding, stride, pad), forward(X1, X2)
    • Maxpooling __init__(filter_h, filter_w, stride, pad), forward(X1)
    • Dropout __init__(p), forward(X1)
    • BatchNorm __init__(gamma, beta), forward(X1)
  • Block

    • ResBlock __init__(X1, X2, scps), forward()
  • Activator

    • Relu __init__(), forward(X1)
    • Identity __init__(), forward(X1)
    • Sigmoid __init__(), forward(X1)
    • Tanh __init__(), forward(X1)
  • Loss Function

    • MSE __init__()
    • Softmax __init__()
  • Optimizer

    • SGD __init__()
    • Momentum __init__(beta1=0.9)
    • AdaGram __init__()
    • AdaDelta / RMSprop __init__(beta2=0.999)
    • Adam __init__(beta1=0.9, beta2=0.999)
  • Models

    • LeNet
    • AlexNet(without LRN)
    • VGG16
    • ResNet18
  • Examples

    • mnist
    • cifar-10

Quick Start


Requirements

  • python 2.7
  • numpy 1.11.3

Get numpynet

git clone https://github.com/horcham/numpy-net.git
python setup.py install

and you can import numpynet and play

import numpynet as nn

There are some demos, examples/mnist.py is a demo that solving digital
classification by Lenet. you can run them and have fun:

cd examples
python mnist.py  

Tutorials


Graph

Graph is a network definition. During Graph 's definition, Variable,Operation,Layer, Loss Function, Optimizer are just symbol, we can add them into graph.

import numpynet as nn

input = nn.Variable(nn.UniformInit([1000, 50]), lr=0)		# input data
output = nn.Variable(nn.onehot(np.random.choice(['a', 'b'], [1000, 1])), lr=0)     # output data, contain two labels

graph = nn.Graph()		    # Graph initial

X = nn.Placeholder()       # Add Placeholder
W0 = nn.Variable(nn.UniformInit([50, 30]), lr=0.01)
graph.add_var(W0)       # Add Variable into graph
W1 = nn.Variable(nn.UniformInit([30, 2]), lr=0.01)
graph.add_var(W1)

FC0 = nn.Op(nn.Dot(), X, W0)
graph.add_op(FC0)     # Add Operation into graph

act0 = nn.Layer(nn.SigmoidActivator(), FC0)
graph.add_layer(act0)   # Add Layer into graph

FC1 = nn.Op(nn.Dot(), act0, W1)
graph.add_op(FC1)

graph.add_loss(nn.Loss(nn.Softmax()))  	# add Loss function
graph.add_optimizer(nn.SGDOptimizer())	# add Optimizer

After the definition, we can train the net

graph.forward(input)			# netword forward
graph.calc_loss(output)		# use label Y and calculate loss
graph.backward()		# netword backward and calculate gradient
graph.update()			# update the variable in graph.add_var by optimizer

Variables

Variable is similar to numpy.array, but it is a class which also
contains other attributes like lr(learning rate), D(gradient). Any input
and variables should be convert to Variable before feeding into network.

graph = Graph()

X = Variable(X, lr=0)	# if X is not trainable, lr=0
w = Variable(w, lr=1)	# if w is trainable, lr=1, and add it into graph
graph.add_var(w)

Placeholder

When definding the graph, we use Placeholder to represent input data.

X = Placeholder()       # Add Placeholder
W0 = Variable(UniformInit([50, 30]), lr=0.01)
FC0 = Op(Dot(), X, W0)
graph.add_op(FC0)     # Add Operation into graph

After definition, the graph begin to train, input data(Variable) and output data(Variable)
were feed into graph by

graph.forward(input)			# netword forward
graph.calc_loss(output)		# use label Y and calculate loss

and Placeholder is replaced by Variable


Operation

Operation is similar to operations of numpy. For example, class Dot is
similar to numpy.dot, but it also contains backward funtions, which is used
to calculate gradient.

During graph's definition, Operation is defined as symbol.

How to define an Operation?

op_handler = Op(operation(), X, W)  # operation which need two inputs
op_handler2 = Op(operation(), X)    # operation which need one inputs

operation() : Dot(),Add,Conv2d and so on

X : First input, Variable, which is not trainable

W : Second input, Variable, which is trainable

For example

FC0 = Op(Dot(), X, W0)  # Define operation: Dot
graph.add_op(FC0)     # Add Operation into graph

Operation calculates when graph begins to forward and backward.

graph.forward()  # operation begins forward
graph.backward() # operation begins backward

Dropout

Dropout is an Op, we always add it before fully connected operation. We only need
to define Dropout in graph:

add0 = Op(Dot(), X, W0)
graph.add_op(add0)
dp0 = Op(Dropout(0.3), add0)
graph.add_op(dp0)
act0 = Layer(SigmoidActivator(), dp0)
graph.add_layer(act0)

BatchNorm

BatchNorm is an Op, we always add it before Layer. Before define BatchNorm,
we should first define gamma and beta as trainable Variable, and add them into
graph by graph.add_var:

g0, bt0 = Variable(np.random.random(), lr=0.01), Variable(np.random.random(), lr=0.01)
graph.add_var(g0)
graph.add_var(bt0)

and define BarchNorm in graph:

conv0 = Op(Conv2d(), X, W0)
graph.add_op(conv0)
bn0 = Op(BatchNorm(g0, bt0), conv0)
graph.add_op(bn0)
act0 = Layer(ReluActivator(), bn0)
graph.add_layer(act0)

After definition of graph, when graph.backward called, gamma and beta will be trained


Block

Add Block to graph, now Block just support ResBlock(Block in ResNet-18), the follow shows
its construction

     |    |-------------> X or (conv --> BN)  --------------|     |
     |    |                                                 v     |
--------> X --> conv --> BN --> Relu --> conv --> BN -----> + ------->
     |                                                            |
     |                      Block                                 |

When the dimention of BN’s output is different from X, the shortcut switch to conv --> BN,
otherwise X.

To define a ResBlock, you call

block = nn.ResBlock(X1, x2, sc)

X1 is the output of previous op/block/layer. X2 is dict, it contains the parameters
of conv and BN in main branch. sc contains the parameters of
shortcut, it is also dict.

For example, when shortcut is X

# Block 1
W1_1 = nn.Variable(nn.UniformInit([3, 3, 64, 64]), lr=lr)
b1_1 = nn.Variable(nn.UniformInit([64, 1]), lr=lr)
gamma1_1 = nn.Variable(nn.UniformInit([1, 64, self.W, self.H]), lr=lr)
beta1_1 = nn.Variable(nn.UniformInit([1, 64, self.W, self.H]), lr=lr)
W1_2 = nn.Variable(nn.UniformInit([3, 3, 64, 64]), lr=lr)
b1_2 = nn.Variable(nn.UniformInit([64, 1]), lr=lr)
gamma1_2 = nn.Variable(nn.UniformInit([1, 64, self.W, self.H]), lr=lr)
beta1_2 = nn.Variable(nn.UniformInit([1, 64, self.W, self.H]), lr=lr)
self.graph.add_vars([W1_1, b1_1, gamma1_1, beta1_1, \
                     W1_2, b1_2, gamma1_2, beta1_2])
pamas1 = {'w1': W1_1, 'b1': b1_1, \  # the first conv in main branch
          'gamma1': gamma1_1, 'beta1': beta1_1, \  # the first BN in main branch
          'w2': W1_2, 'b2': b1_2, \  # the second conv in main branch
          'gamma2': gamma1_2, 'beta2': beta1_2}    # the second BN in main branch
          
B1 = nn.ResBlock(act0, pamas1)
self.graph.add_block(B1)

When shortcut comes to conv --> BN

# Block 3
W3_1 = nn.Variable(nn.UniformInit([3, 3, 64, 128]), lr=lr)
b3_1 = nn.Variable(nn.UniformInit([128, 1]), lr=lr)
gamma3_1 = nn.Variable(nn.UniformInit([1, 128, self.W/2, self.H/2]), lr=lr)
beta3_1 = nn.Variable(nn.UniformInit([1, 128, self.W/2, self.H/2]), lr=lr)
W3_2 = nn.Variable(nn.UniformInit([3, 3, 128, 128]), lr=lr)
b3_2 = nn.Variable(nn.UniformInit([128, 1]), lr=lr)
gamma3_2 = nn.Variable(nn.UniformInit([1, 128, self.W/2, self.H/2]), lr=lr)
beta3_2 = nn.Variable(nn.UniformInit([1, 128, self.W/2, self.H/2]), lr=lr)

w_sc3 = nn.Variable(nn.UniformInit([3, 3, 64, 128]), lr=lr)
b_sc3 = nn.Variable(nn.UniformInit([128, 1]), lr=lr)
gamma_sc3 = nn.Variable(nn.UniformInit([1, 128, self.W/2, self.H/2]), lr=lr)
beta3_sc3 = nn.Variable(nn.UniformInit([1, 128, self.W/2, self.H/2]), lr=lr)
self.graph.add_vars([W3_1, b3_1, gamma3_1, beta3_1, \
                     W3_2, b3_2, gamma3_2, beta3_2, \
                     w_sc3, b_sc3, gamma_sc3, beta3_sc3])
pamas3 = {'w1': W3_1, 'b1': b3_1, \   # the first conv in main branch
          'gamma1': gamma3_1, 'beta1': beta3_1, \  # the first BN in main branch
          'w2': W3_2, 'b2': b3_2, \   # the second conv in main branch
          'gamma2': gamma3_2, 'beta2': beta3_2}    # the second BN in main branch
sc3 = {'w': w_sc3, 'b': b_sc3, \      # conv in shortcut
        'gamma': gamma_sc3, 'beta': beta3_sc3}     # BN in shortcut
B3 = nn.ResBlock(pool2, pamas3, sc3)
self.graph.add_block(B3)

Layer

Add activations to graph

During Layer's definition, Layer is defined as symbol.
How to define an Layer?

layer_handler = Layer(activator(), X)  

X : Variable, which is not trainable

For example

act0 = Layer(SigmoidActivator(), add0) # Define Layer: Sigmoid activation
graph.add_layer(act0)   # Add Layer into graph

Layer calculates when graph begins to forward and backward.

graph.forward()  # Layer begins forward
graph.backward() # Layer begins backward

Loss Function

Add Loss Function to graph, it will calculate loss, and begin
calculate gradient.

During Loss's definition, Loss is defined as symbol.

How to define an Loss?

loss_handler = Loss(loss_funtion())  

loss_function() can be MSE(), Softmax

For example

graph.add_loss(Loss(Softmax()))

Loss calculates after graph forward, call

graph.calc_loss(Y)

to calculate loss. Y is labels of data, Variable

After calculating loss, call

graph.backward()

to do backward.


Optimizer

Add Optimizer to graph, it will update trainable Variable
after backward.

How to define an Loss?

Optimizer_handler = Optimizer()  

Optimizer() can be SGDOptimizer, MomentumOptimizer and so on

For example

graph.add_optimizer(AdamOptimizer())

After backward, trainable Variable needs to update according
its gradient

graph.update()

More

If you want to define Operation or Layer, you only need to
define how this Operation or Layer forward and backward.Be careful
that the first input of Operation must be untrainable Variable and
the second input must be trainable

Meanwhile, it is easy for you to define Optimizer, Loss

你可能感兴趣的:(python,神经网络,机器学习,深度学习)