组合数常用计算公式

  • C n m = n ! m ! ∗ ( n − m ) ! C_n^m=\frac{n!}{m!*(n-m)!} Cnm=m!(nm)!n!
  • C n 2 = n ∗ ( n − 1 ) 2 C_n^2=\frac{n*(n-1)}{2} Cn2=2n(n1)
  • C n 3 = n ∗ ( n − 1 ) ∗ ( n − 2 ) 6 C_n^3=\frac{n*(n-1)*(n-2)}{6} Cn3=6n(n1)(n2)
  • C n m = C n − 1 m − 1 + C n − 1 m C_n^m=C_{n-1}^{m-1}+C_{n-1}^m Cnm=Cn1m1+Cn1m
  • m ∗ C n m = n ∗ C n − 1 m − 1 m*C_n^m=n*C_{n-1}^{m-1} mCnm=nCn1m1
  • C n 0 + C n 1 + C n 2 + … … + C n n = 2 n C_n^0+C_n^1+C_n^2+……+C_n^n=2^n Cn0+Cn1+Cn2++Cnn=2n
  • C n 0 + C n 2 + C n 4 + … … = C n 1 + C n 3 + C n 5 + … … = 2 n − 1 C_n^0+C_n^2+C_n^4+……=C_n^1+C_n^3+C_n^5+……=2^{n-1} Cn0+Cn2+Cn4+=Cn1+Cn3+Cn5+=2n1
  • C n n + C n + 1 n + C n + 2 n + … … + C n + m n = C n + m + 1 n + 1 C_n^n+C_{n+1}^n+C_{n+2}^n+……+C_{n+m}^{n}=C_{n+m+1}^{n+1} Cnn+Cn+1n+Cn+2n++Cn+mn=Cn+m+1n+1
  • 1 ∗ C n 1 + 2 ∗ C n 2 + 3 ∗ C n 3 + … … + n ∗ C n n = n ∗ 2 n − 1 1*C_n^1+2*C_n^2+3*C_n^3+……+n*C_n^n=n*2^{n-1} 1Cn1+2Cn2+3Cn3++nCnn=n2n1
  • 1 2 ∗ C n 1 + 2 2 ∗ C n 2 + 3 2 ∗ C n 3 + … … + n 2 ∗ C n n = n ∗ ( n + 1 ) ∗ 2 n − 2 1^2*C_n^1+2^2*C_n^2+3^2*C_n^3+……+n^2*C_n^n=n*(n+1)*2^{n-2} 12Cn1+22Cn2+32Cn3++n2Cnn=n(n+1)2n2
  • C n 1 1 − C n 2 2 + C n 3 3 − … … + ( − 1 ) n − 1 ∗ C n n n = 1 + 1 2 + 1 3 + … … + 1 n \frac{C_n^1}{1}-\frac{C_n^2}{2}+\frac{C_n^3}{3}-……+(-1)^{n-1}*\frac{C_n^n}{n}=1+\frac{1}{2}+\frac{1}{3}+……+\frac{1}{n} 1Cn12Cn2+3Cn3+(1)n1nCnn=1+21+31++n1
  • ( C n 0 ) 2 + ( C n 1 ) 2 + ( C n 2 ) 2 + … … + ( C n n ) 2 = C 2 n n (C_n^0)^2+(C_n^1)^2+(C_n^2)^2+……+(C_n^n)^2=C_{2n}^n (Cn0)2+(Cn1)2+(Cn2)2++(Cnn)2=C2nn

你可能感兴趣的:(学习笔记)