RTL设计基础(一)

数字IC系统逻辑设计这部分主要介绍两个方面,一个是RTL的设计基础;另一方面是verilog基本语法。这一篇文章主要介绍一下RTL的设计基础。

RTL设计都是采用同步电路设计方式,了解同步电路的设计要求是RTL设计的第一步。下图是一个同步电路的示例:

RTL设计基础(一)_第1张图片

其中,组合逻辑实现设计所需要的功能,寄存器用于暂存数据用时钟控制。只有当时钟进行有效跳变时,才将新的数据所存起来,否则数据保持原值。时钟相当于同步电路中的指挥。时钟一般是由晶振产生,或者由外部输入,如果需要还需要用锁相环进行倍频、相移等操作。

下面对寄存器做一个介绍,一个寄存器的结构如下图所示:

RTL设计基础(一)_第2张图片

寄存器的功能如下图所示:

RTL设计基础(一)_第3张图片

由图可得,该寄存器在时钟的跳变沿锁存数据,然后数据会保持直到下一个跳变沿。寄存器要正常工作,必须保证D端的数据变化与时钟的有效沿不能距离太近,否则有可能锁存错误的数据。在综合库中,规定了数据变化端跟时钟跳变沿最短的时间要求,即建立时间约束和保持时间约束。建立时间规定,在时钟沿到达前的某段时间内,数据必须稳定;保持时间定义了在时钟沿之后的某段时间之后,数据才能发生变化。如下图所示:

对于一个寄存器来说,除了数据端与时钟端有时序要求。异步复位端与时钟端也有要求。假设一个寄存器是已不复位的,复位信号低电平有效。当复位信号是低电平时,寄存器被初始化。当异步复位信号跳高时,寄存器在时钟跳变沿锁存新的数据。如果异步复位信号跳高的时刻距离时钟有效沿太近,寄存器可能继续保持复位状太,也可能锁存新的数据。因此有必要定义时钟有效沿与异步复位无效沿之间的时序要求,这就是recovery/removal的时序要求,如图所示;

RTL设计基础(一)_第4张图片

寄存器中建立时间/保持时间、recovery/removal的时序要求, 对设计的最大组合逻辑延时、时钟树的构造、复位树的构造都提出了要求。复位树、时钟树一般由后端工具进行处理。 对RTL设计者来说,最需关注的是建立时间的问题。 设计中的时序违例通过静态时序分析工具可以检查出来。

IC系统中, 复位的目的是为了将芯片强制到一个已知的状态。 同步复位与异步复位都能达到这个目的。两者的差别在于: 同步复位需要时钟有效沿到达时才能起作用,而异步复位不需要。如下,是同步复位电路:

RTL设计基础(一)_第5张图片

同步复位的优点在于:

1)在采用基于周期的仿真器场合,同步复位简单

2)寄存器可以滤掉复位上的毛刺

缺点:1)需要时钟,在某些场合带来不便。假如设计中包含三态总线,总线上接着许多寄存器。当上电后,晶振还未起振,锁相环还未稳定,这时候没有时钟,所以复位还没有起作用,因此会导致总线上发生冲突。只有增加上电复位电路才能解决此问题。

2)采用同步复位,复位成为路径组合逻辑的一部分,由于复位的负载比较大,因此会使得复位树的延迟比较大,从而导致在路径上的延迟比较大。

异步复位的优点是不需要时钟,且复位不会影响到路径延时。缺点是:复位上的毛刺不能被由它复位的寄存器过滤掉;复位的无效沿与时钟之间存在时序要求。

将同步复位和异步复位优点结合起来:给出了一种异步复位,同步释放的复位方法,如下图所示:

 RTL设计基础(一)_第6张图片

该电路的原理是:当复位信号有效时,两个同步器都为低,因此同步器的输出立即变低,而不管此时是否存在时钟。当复位信号变高后,经过时钟跳变沿后才能将高电平锁存到同步器的输出,也就是说,同步器的输出的无效沿是与时钟同步的。

你可能感兴趣的:(数字IC系统设计)