MapReduce的WordCount案例过程分析及实现

功能介绍:在给定的文本文件之中统计出每个单词出现的次数

实现流程分析

  1. 输入数据:test.txt
    MapReduce的WordCount案例过程分析及实现_第1张图片
  2. 期望输出数据:
    monkey 2
    pandas 1
    tiger 2
    owl 1
    cat 1
    dog 3
  3. 按照MapReduce编程规范编写程序
    1. Mapper
      • 将MapTask传给我们的文本内容转为String
      • 将String切分为单独的单词
      • 将每个单词输出KV对<单词,1>
    2. Reducer
      • 汇总每个key(也就是每个单词)的个数
      • 输出每个key的总次数
    3. Driver
      • 获取配置信息,获取Job对象实例
      • 指定本程序的jar包所在的本地路径
      • 关联Mapper/Reducer业务类
      • 指定Mapper输出数据的kv类型
      • 指定最终输出的数据的kv类型
      • 指定job的输入原始文件所在目录
      • 指定job的输出结果所在目录
      • 提交作业

具体实现

  1. 环境准备
    1.1 创建一个maven工程。
    MapReduce的WordCount案例过程分析及实现_第2张图片
    1.2 加入如下依赖:

    <dependencies>
            <dependency>
                <groupId>junitgroupId>
                <artifactId>junitartifactId>
                <version>RELEASEversion>
            dependency>
    
            <dependency>
                <groupId>org.apache.logging.log4jgroupId>
                <artifactId>log4j-coreartifactId>
                <version>2.8.2version>
            dependency>
    
            <dependency>
                <groupId>org.apache.hadoopgroupId>
                <artifactId>hadoop-commonartifactId>
                <version>2.7.2version>
            dependency>
    
            <dependency>
                <groupId>org.apache.hadoopgroupId>
                <artifactId>hadoop-clientartifactId>
                <version>2.7.2version>
            dependency>
    
            <dependency>
                <groupId>org.apache.hadoopgroupId>
                <artifactId>hadoop-hdfsartifactId>
                <version>2.7.2version>
            dependency>
        dependencies>
    

    1.3 编写log4j的配置文件log4j.properties

    	### direct log messages to stdout ###
    	log4j.appender.stdout=org.apache.log4j.ConsoleAppender
    	log4j.appender.stdout.Target=System.out
    	log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
    	log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} %5p %c{1}:%L - %m%n
    	log4j.rootLogger=debug, stdout
    
  2. 编写程序
    2.1 编写Mapper类

    package org.hadoop.mapreduce;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    import java.io.IOException;
    
    
    // map阶段
    public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
        Text k = new Text();
        IntWritable v = new IntWritable(1);
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            // 1.从文件读取一行 eg: monkey monkey
            String line = value.toString();
            // 2.切割字符串
            String[] words = line.split(" ");
            // 3.循环写出
            for (String word:words){
                // monkey
                k.set(word);
                // 写出
                context.write(k,v);
            }
    
        }
    }
    

    2.2 编写Reducer类

    package org.hadoop.mapreduce;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    import java.io.IOException;
    
    /**
     * 佛祖保佑        永无BUG
     **/
    public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            // 
            int sum = 0;
            // 1.对输入数据累加求和
            for (IntWritable value : values) {
                sum += value.get();
            }
    
            IntWritable v = new IntWritable();
            v.set(sum);
            // 2.写出 
            context.write(key,v);
        }
    }
    

    2.3 编写Driver类

    package org.hadoop.mapreduce;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    import java.io.IOException;
    
    /**
     * 佛祖保佑        永无BUG
     **/
    public class WordCountDriver {
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
            Configuration conf = new Configuration();
            // 1.获取job对象
            Job job = Job.getInstance(conf);
    
            // 2.设置jar存放路径(位置)
            job.setJarByClass(WordCountDriver.class);
    
            // 3.关联Map和Reduce类
            job.setMapperClass(WordCountMapper.class);
            job.setReducerClass(WordCountReducer.class);
    
            // 4.设置Map阶段输出数据的key&value类型
            job.setMapOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
    
            // 5.设置最终数据输出的key&value类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
    
            // 6.设置文本的数据输入路径和结果的输出路径
            FileInputFormat.setInputPaths(job,new Path(args[0]));
            FileOutputFormat.setOutputPath(job,new Path(args[1]));
    
            // 7.提交job
            boolean res = job.waitForCompletion(true);
    
            System.out.println(res);
        }
    }
    
    

    2.4 测试运行
    运行时传入2个参数,第一个是输入文件路径,第二个是结果输出文件路径:
    MapReduce的WordCount案例过程分析及实现_第3张图片
    运行成功截图:
    MapReduce的WordCount案例过程分析及实现_第4张图片
    进入output文件夹:
    MapReduce的WordCount案例过程分析及实现_第5张图片
    打开最后一个part-r-00000文件:
    MapReduce的WordCount案例过程分析及实现_第6张图片
    可以看到程序统计出来的结果与预期的结果相同。

你可能感兴趣的:(Java,大数据开发)