一些基础算法的模板(持续更新)

更新中

//Templates From Extended_Ash/Cooevjnz/JacaJava/Tubbcrafft
//To be continued...

//Suffix Automation
char str[N];  
int s[N][26],mx[N],f[N],sz[N];  
int last=1,cnt=1,n,v[N],r[N],ans=0;   
inline int extend(char c){  
    int p=last,np=last=++cnt,q,nq;  
    c-='a'; mx[np]=mx[p]+1; sz[np]=1;  
    for(;p&&!s[p][c];p=f[p]) s[p][c]=np;  
    if(!p) return f[np]=1;  
    q=s[p][c];  
    if(mx[p]+1==mx[q]) f[np]=q;  
    else {  
        nq=++cnt;  
        mx[nq]=mx[p]+1;  
        f[nq]=f[q]; f[q]=f[np]=nq;  
        memcpy(s[nq],s[q],26<<2);  
        for(;p&&s[p][c]==q;p=f[p]) s[p][c]=nq;  
    }  
}  
int build(){  
    scanf("%d%s",&n,str);  
    for(int i=0;ifor(int i=1;i<=cnt;++i) ++v[mx[i]];  
    for(int i=1;i<=n;++i) v[i]+=v[i-1];  
    for(int i=cnt;i;--i) r[v[mx[i]]--]=i;  
    for(int p,i=cnt;i;--i) sz[f[r[i]]]+=sz[r[i]];   
}  

//String Hash
#define BASE 27
#define LL long long
char s[N]; LL h[N],bas[N];
LL gH(int l,int r){ return h[r]-h[l-1]*bas[r-l+1]; }
void init_hash(){
	for(int i=1;i<=n;++i){ 
		bas[i]=bas[i-1]*BASE;
		h[i]=h[i-1]*BASE+s[i]-'a';
	}
}

//Suffix Array (using hash)
#define BASE 27
#define LL long long
char s[N]; LL h[N],bas[N]; int sa[N],r[N],H[N];
LL gH(int l,int r){ return h[r]-h[l-1]*bas[r-l+1]; }
void init_hash(){
	for(int i=1;i<=n;++i){ 
		bas[i]=bas[i-1]*BASE;
		h[i]=h[i-1]*BASE+s[i]-'a';
	}
}
inline bool cmp(int x,int y){
	int l=-1,r=n-max(x,y);
	for(int m;l1>>1;
		if(gH(x,x+m)==gH(y,y+m)) l=m;
		else r=m-1;
	}
	return s[x]void buildSa(){
	init_hash();
	for(int i=1;i<=n;++i) sa[i]=i;
	sort(sa+1,sa+1+n,cmp);
	for(int i=1;i<=n;++i) r[sa[i]]=i;
	for(int i=1,j,k=0;i<=n;H[r[i++]]=k){
		if(k) --k;
		if(r[i]>1) for(j=sa[r[i]-1];s[i+k]==s[j+k];++k);
	}
}

//KMP & ExtendedKMP
int nt[N];
void KMP(char* s,char* c,int& t,int* ans){
	int n=strlen(c+1),m=strlen(s+1);
	for(int i=1,j;ifor(j=i;j;)
			if(c[j=nt[j]]==c[i]) { nt[i+1]=j+1; break; }
	for(int i=0,j=0;iif(jelse while(j) if(c[j=nt[j]]==s[i]){ ++j; break; }
		if(j==n) ans[++t]=i-n+1;
	}
}

//Trie
//manacher
//Tarjan Algorithm
struct Edge{ int u,v,nt; } G[1000010];
int c=1,h[500010],dfn[500010],clk=0,Col=0;
int n,m,low[500010],col[500010],d[500010];
bool b[1000010];
inline void adj(int x,int y){
	G[++c]=(Edge){x,y,h[x]}; h[x]=c;
	G[++c]=(Edge){y,x,h[y]}; h[y]=c;
}
void tarjan(int u,int v){
	clk++; low[v]=dfn[v]=clk;
	for(int w,i=h[v];i;i=G[i].nt)
		if((w=G[i].v)!=u){
			if(!dfn[w]){
				tarjan(v,w);
				if(low[w]==dfn[w] || low[w]>dfn[v]){ b[i]=1; b[i^1]=1; }
				else low[v]=min(low[v],low[w]);
			} else low[v]=min(low[v],dfn[w]);
		}
}
void dfs(int x,int u,int Cl){
	col[x]=Cl;
	for(int v,i=h[x];i;i=G[i].nt)
		if((v=G[i].v)!=u&&!b[i]&&!col[v]) dfs(v,x,Cl);
}
int main(){
	scanf("%d%d",&n,&m);
	for(int x,y,i=0;iscanf("%d%d",&x,&y);
		adj(x,y);
	}
	tarjan(0,1);
	for(int i=1;i<=n;++i) 
		if(!col[i]) dfs(i,0,++Col);
}
//Dijkstra+Heap
struct Node{ int d,id; } x;
struct Edge{ int v,c,nt; } G[100010];
int h[10010],d[10010];
inline bool gmin(int& a,int b){ return a>b?(a=b)|1:0; }
inline bool operator < (Node a,Node b){ return a.d>b.d; }
void dijk(int s){
	priority_queue q;
	d[s]=0; q.push((Node){0,s});
	for(int u;!q.empty();){
		x=q.top(); q.pop();
		if(d[u=x.id]continue;
		for(int v,i=h[u];i;i=G[i].nt)
			if(gmin(d[v=G[i].v],d[u]+G[i].c)) q.push((Node){d[v],v});
	}
}
//Floyd
int f[N][N];
void Floyd(int n){
	for(int k=1;k<=n;++k)
		for(int i=1;i<=n;++i)
			for(int j=1;j<=n;++j)
				f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
}
//ISAP Maxflow
//mincost maxflow
//Kuskral & Prim
//multiplication Lca
struct Tree{
	Edge G[N<<1]; 
	int h[N],d[N],f[18][N],cnt;
	inline void adj(int x,int y){ 
		G[++cnt]=(Edge){x,y,h[x]}; h[x]=cnt; 
		G[++cnt]=(Edge){y,x,h[y]}; h[y]=cnt; 
	}
	void dfs(int x,int p){
		d[x]=d[p]+1; f[0][x]=p;
		for(int j=1;j<18;++j)
			f[j][x]=f[j-1][f[j-1][x]];
		for(int v,i=h[x];i;i=G[i].nt)
			if((v=G[i].v)!=p) dfs(v,x);
	}
	void build(){ dfs(1,0); }
	void swim(int& x,int d){
		for(int i=0;d;++i,d>>=1) if(d&1) x=f[i][x]; 
	}
	int gLca(int x,int y){
		if(d[x]>d[y]) swap(x,y);
		LL x1=0,x2=0;
		swim(y,d[y]-d[x]);
		if(x==y) return x;
		for(int j=17;;){
			for(;~j&&f[j][x]==f[j][y];--j);
			if(j<0) return f[0][x];
			x=f[j][x]; y=f[j][y];
		}
	}
} T;

//Tree chain partition 
struct Edge{ int v,nt; } G[N];
int h[N],d[N],top[N],sz[N],son[N];
int f[N],w[N],v[N<<2],n,m,cnt=0,clk=0;
inline void adj(int x,int y){ G[++cnt]=(Edge){y,h[x]}; h[x]=cnt; }
void dfs(int x){
	d[x]=d[f[x]]+1; sz[x]=1;
	for(int v,i=h[x];i;i=G[i].nt){
		dfs(v=G[i].v);
		sz[x]+=sz[v];
		if(sz[v]>sz[son[x]]) son[x]=v;
	}
}
void dt(int x,int p){
	w[x]=++clk; top[x]=p;
	if(son[x]) dt(son[x],p);
	for(int v,i=h[x];i;i=G[i].nt)
		if((v=G[i].v)!=son[x]) dt(v,v);
}
int gLca(int x,int y){
	for(;top[x]!=top[y];y=f[top[y]])
		if(d[top[x]]>d[top[y]]) swap(x,y);
	if(d[x]>d[y]) swap(x,y);
	return x;
}
int main(){
	scanf("%d%d",&n,&m);
	for(int x,i=2;i<=n;++i){
		scanf("%d",&x);
		adj(x,i); f[i]=x;
	}
	dfs(1); dt(1,1);
	for(int x,y,c;m--;){
		scanf("%d%d%d",&x,&y);
		gLca(x,y);
	}
}	

//dfs alignment
//Link cut Tree
//disjoin Set (dsu)
int p[N];
inline void init(){
	for(int i=0;iinline int gFa(int x){ return x==f[x]?x:f[x]=gFa(f[x]); }

//powermod && gcd && extend-gcd
#define L long long
inline L pow(L x,L k,L M,L s=1){
	for(;k;x=x*x%M,k>>=1) if(k&1) s=s*x%M;
	return s;
}

inline int gcd(int a,int b){
	for(int c;b;a=b,b=c) c=a%b;
	return a;
}

inline int exgcd(int a,int b,int& x,int& y){
	if(b){
		int r=exgcd(b,a%b,y,x);
		y-=x*(a/b); return r;
	} else { x=1; y=0; return a; }
}

//Distratic log
#define L long long
mapint> rec;
int dislog(int x,int n,int M){ //x^dislog(x,n)=n(MOD M)
	if(x==0) return -1;
	if(n%M==1) return 0;
	L c=1,mul;
	int sq=sqrt(M);
	for(;(L)sq*sq<=M;++sq);
	for(int i=1;i<=sq;++i){
		rec[c]=i;
		c=c*x%M;
	}
	mul=c; c=1;
	for(int i=0;ipow(c,M-2);
		if(rec[m]) return (rec[m]+i*sq)%M;
		c=c*mul%M;
	}
	return -1;
}

//Miller Rabin
bool test(int n,int a,int d){
	if(n==2 || n==a) return 1;
	if(~n&1) return 0;
	for(;~d&1;d>>=1);
	int t=pow(a,d,n);
	for(;(d!=n-1)&&(t!=1)&&(t!=n-1);d<<=1) t=(L)t*t%n;
	return (t==n-1)||(d&1);
}
bool miller_rabin(int x){
	if(x<2) return 0;
	int a[5]={2,3,61,101,10007}; //testing set
	for(int i=0;i<5;++i) if(!test(n,a[i],n-1)) return 0;
	return 1;
}

//linearity sieve for Prime & miu & phi
int w[N],t; bool vis[N];
int phi[N],miu[N];
void get_prime(int n){
	phi[1]=miu[1]=1;
	for(int i=2;i<=n;++i){
		if(!vis[i]){
			w[++t]=i;
			phi[i]=i-1;
			miu[i]=-1;
		}
		for(int j=1;j<=t&&i*w[j]<=n;++j){
			vis[i*w[j]]=1;
			if(i%w[j]==0){
				miu[i*w[j]]=0;
				phi[i*w[j]]=phi[i]*w[j];
				break;
			}
			miu[i*w[j]]=-miu[i];
			phi[i*w[j]]=phi[i]*(w[j]-1);
		}
	}
}

//Segment Tree
//ZKW segment Tree (Use as Binary search tree)
struct ZKW{
	int n,M,s[N<<2];
	void init(int N):n(N){
		for(M=1;M<=n;M<<=1); --M;
		for(int i=M+1;i<=M+n;++i) s[i]=1;
		for(int i=M;i;--i) s[i]=s[i<<1]+s[i<<1|1];
	}
	inline int count(int x){ return s[x+M]; }
	inline void insert(int x){ for(x+=M;x;x>>=1) ++s[x]; }
	inline void remove(int x){ for(x+=M;x;x>>=1) --s[x]; }
	inline int rank(int x,int r=1){ for(x+=M;x;x>>=1) if(x&1) r+=s[x^1]; return r; }
	inline int pre(int x){
		for(x+=M;x;x>>=1)
			if((x&1)&&s[x^1]){
				for(--x;x<=M;x=(s[x<<1|1]?x<<1|1:x<<1));
				return x-M;
			}
		return -1;
	}
	inline int suc(int x){
		for(x+=M;x;x>>=1)
			if((~x&1)&&s[x^1]){
				for(++x;x<=M;x=(s[x<<1]?x<<1:x<<1|1));
				return x-M;
			}
		return -1;
	}
	inline int kth(int k){
		for(int x=1;x<=M;)
			if(s[x<<1]>=k) x=x<<1;
			else { k-=s[x<<1]; x=x<<1|1; }
		return x-M;
	}
};

//Segment Tree Merging
//Persistence Segment Tree
//fenwick tree
int s[N],n;
inline void add(int x,int k){ for(;x<=n;x+=x&-x) s[x]+=k; }
inline int sum(int x,int S=0){ for(;x;x&=x-1) S+=s[x]; return s; }

//ST list
int st[20][N],n,val[N],lg[N]={-1};
inline int f(int x,int y){ return; } //f is a function like min or gcd
void init(){
	for(int i=1;i<=n;++i) st[0][i]=val[i],lg[i]=lg[i-1]+!(i&(i-1));
	for(int i=n;i;--i)
		for(int j=1;(i+(1<1)<=n;++j)
			st[j][i]=f(st[j-1][i],st[j-1][i+(1<1)][j-1]); 
}
int query(int l,int r){
	int k=lg[r-l+1];
	return f(st[k][l],st[k][r-(1<1][k]);
}

//preffix Sum
//Matrix power-mod
struct Mat{
	int n,m;
	int s[16][16];
	Mat(){ memset(s,0,sizeof s); }
	void clr(){ memset(s,0,sizeof s); }
	void set(int x,int y){ n=x; m=y; }
	Mat operator * (const Mat& b){
		Mat c; c.set(n,b.m);
		for(int i=0;ifor(int j=0;jfor(int k=0;kreturn c;
	}
} a,b;
void pow(int k){
	for(;k;b=b*b,k>>=1) if(k&1) a=a*b;
}
int main(){
	a.set(1,N); b.set(N,N);
	for(int i=0;ifor(int j=0;jpow(n);
}

//Treap
//Splay

你可能感兴趣的:(OI,图论,数据结构,----优先队列,----并查集,----ST表,----树状数组,----线段树,--------可持久化线段树,--------线段树合并,----可并堆,----平衡树,----动态树,----树套树,----路径,--------连通性,--------最短路,----匹配,--------二分图匹配,----生成树问题,--------最小生成树,----网络流,-)