今天新学了RMQ数据结构,开开心心地刷了一波题。(嗯~~~~我真棒!)
从容易到简单
洛谷P2251 质量检测 https://www.luogu.org/problemnew/show/P2251 普及/提高-
洛谷P1816 忠诚 https://www.luogu.org/problemnew/show/P1816 普及+/提高
洛谷P2880 [USACO07JAN]平衡的阵容Balanced Lineup https://www.luogu.org/problemnew/show/P2880 提高+/省选- (这题好假)
洛谷P2216 [HAOI2007]理想的正方形 https://www.luogu.org/problemnew/show/P2216 提高+/省选-
洛谷P2471 [SCOI2007]降雨量 https://www.luogu.org/problemnew/show/P2471 省选/NOI-
以上全是套上RMQ模板的题,如果想练练手的可以试试,难度其实不大(第五题可是省选!!!!!!!)(其实都是假的。。。)省选也是简单套用RMQ模板,不过变态的是它超细节的模拟,这心觉得变态,过了好几次才过了。(省选哪有那么容易过。)
有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
#include
#include
#define re register int
#define ti i+(1<<(k-1))
#define tj j+(1<<(k-1))
#define tk (1<'9'){if(ch == '-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
inline int Min(int a,int b,int c,int d){return min(a,min(b,min(c,d)));}
inline int Max(int a,int b,int c,int d){return max(a,max(b,max(c,d)));}
inline int qMax(int x,int y,int x1,int y1){
re k = log[n];
re t1 = f[k][x][y], t2=f[k][x1-tk+1][y]; //错误:t2、t3重复了
re t3 = f[k][x][y1-tk+1], t4=f[k][x1-tk+1][y1-tk+1];
return Max(t1,t2,t3,t4);
}
inline int qMin(int x,int y,int x1,int y1){
re k = log[n];
re t1 = z[k][x][y], t2=z[k][x1-tk+1][y]; //错误:t2、t3重复了
re t3 = z[k][x][y1-tk+1], t4=z[k][x1-tk+1][y1-tk+1];
return Min(t1,t2,t3,t4);
}
int main(){
a=read(); b=read(); n=read();
log[0] = -1;//*****
for(re i=1; i<=a; i++){
for(re j=1; j<=b; j++){
f[0][i][j] = z[0][i][j] = read();
}
}
for(re i=1; i<=1001; i++){
log[i] = log[i>>1]+1;
}
for(re k=1; k<=log[min(a,b)]; k++){
for(re i=1; i+tk-1<=a; i++){
for(re j=1;j+tk-1<=b; j++){
f[k][i][j] = Max(f[k-1][i][j],f[k-1][ti][j],f[k-1][i][tj],f[k-1][ti][tj]);
z[k][i][j] = Min(z[k-1][i][j],z[k-1][ti][j],z[k-1][i][tj],z[k-1][ti][tj]);
}//z写成f,该去看看眼科了
}
}
int ans = 0x7fffffff;
for(re i=1; i<=a-n+1; i++){
for(re j=1; j<=b-n+1; j++){
ans = min(ans,qMax(i,j,i+n-1,j+n-1)-qMin(i,j,i+n-1,j+n-1));
}
}
printf("%d",ans);
return 0;
}