【转】经典算法总结——背包问题(java实现)【已完结】

问题描述: 
一个背包的总容量为V,现在有N类物品,第i类物品的重量为weight[i],价值为value[i] 
那么往该背包里装东西,怎样装才能使得最终包内物品的总价值最大。这里装物品主要由三种装法: 
1、0-1背包:每类物品最多只能装一次 
2、多重背包:每类物品都有个数限制,第i类物品最多可以装num[i]次 
3、完全背包:每类物品可以无限次装进包内

一、0—1背包 
思路分析: 
0-1背包问题主要涉及到两个问题的求解

a)求解背包所含物品的最大值:

利用动态规划求最优值的方法。假设用dp[N][V]来存储中间状态值,dp[i][j]表示前i件物品能装入容量为j的背包中的物品价值总和的最大值(注意是最大值),则我们最终只需求知dp[i=N][j=V]的值,即为题目所求。 
现在考虑动态规划数组dp[i][j]的状态转移方程: 
假设我们已经求出前i-1件物品装入容量j的背包的价值总和最大值为dp[i-1][j],固定容量j的值不变,则对第i件物品的装法讨论如下: 
首先第i件物品的重量weight[i]必须小于等于容量j才行,即 
1、若weight[i]>j,则第i件物品肯定不能装入容量为j的背包,此时dp[i][j]=dp[i-1][j] 
2、若weight[i]<=j,则首先明确的是这件物品是可以装入容量为j的背包的,那么如果我们将该物品装入,则有 
dp[i][j]=dp[i-1][j-weight[i]]+value[i] 
随之而来的问题是我们要判断第i件物品装到容量为j的背包后,背包内的总价值是否是最大?其实很好判断,即如果装了第i件物品后的总价值dp[i-1][j-weight[i]]+value[i]>没装之前的总价值最大值dp[i-1][j],则肯是最大的;反之则说明第i件物品不必装入容量为j的背包(装了之后总价值反而变小,那么肯定就不需要装嘛) 
故,状态转移方程如下: 
dp[i][j] = (dp[i-1][j] > (dp[i-1][j-weight[i]]+value[i]))? dp[i-1][j]:(dp[i-1][j-weight[i]]+value[i]) 
注意:这里的前i件物品是给定次序的

b)求出背包中装入物品的编号

这里我们采用逆推的思路来处理,如果对于dp[i][j]>dp[i-1][j],则说明第i个物品肯定被放入了背包,此时我们再考察dp[i-1][j-weight[i]]的编号就可以了。

java代码实现:

/**
     * 0-1背包问题
     * @param V 背包容量
     * @param N 物品种类
     * @param weight 物品重量
     * @param value 物品价值
     * @return
     */
    public static String ZeroOnePack(int V,int N,int[] weight,int[] value){

        //初始化动态规划数组
        int[][] dp = new int[N+1][V+1];
        //为了便于理解,将dp[i][0]和dp[0][j]均置为0,从1开始计算
        for(int i=1;i j)
                    dp[i][j] = dp[i-1][j];
                else
                    dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-weight[i-1]]+value[i-1]);
            }
        }
        //则容量为V的背包能够装入物品的最大值为
        int maxValue = dp[N][V];
        //逆推找出装入背包的所有商品的编号
        int j=V;
        String numStr="";
        for(int i=N;i>0;i--){
            //若果dp[i][j]>dp[i-1][j],这说明第i件物品是放入背包的
            if(dp[i][j]>dp[i-1][j]){
                numStr = i+" "+numStr;
                j=j-weight[i-1];
            }
            if(j==0)
                break;
        }
        return numStr;  
    }


0-1背包的优化解法

/**
     * 0-1背包的优化解法
     * 思路:
     * 只用一个一维数组记录状态,dp[i]表示容量为i的背包所能装入物品的最大价值
     * 用逆序来实现
     */
    public static int ZeroOnePack2(int V,int N,int[] weight,int[] value){
        //动态规划
        int[] dp = new int[V+1];
        for(int i=1;i=weight[i-1];j--){
                dp[j] = Math.max(dp[j-weight[i-1]]+value[i-1],dp[j]);
            }
        }
        return dp[V];       
    }


二、多重背包

java代码实现如下:

/**
     * 第三类背包:多重背包
     * 
     * @param args
     */
    public static int manyPack(int V,int N,int[] weight,int[] value,int[] num){
        //初始化动态规划数组
        int[][] dp = new int[N+1][V+1];
        //为了便于理解,将dp[i][0]和dp[0][j]均置为0,从1开始计算
        for(int i=1;i j)
                    dp[i][j] = dp[i-1][j];
                else{
                    //考虑物品的件数限制
                    int maxV = Math.min(num[i-1],j/weight[i-1]);
                    for(int k=0;k0;i--){
            //若果dp[i][j]>dp[i-1][j],这说明第i件物品是放入背包的
            while(dp[i][j]>dp[i-1][j]){
                numStr = i+" "+numStr;
                j=j-weight[i-1];
            }
            if(j==0)
                break;
        }*/
        return dp[N][V];
    }


三、完全背包

java代码实现:

/**
     * 第二类背包:完全背包
     * 思路分析:
     * 01背包问题是在前一个子问题(i-1种物品)的基础上来解决当前问题(i种物品),
     * 向i-1种物品时的背包添加第i种物品;而完全背包问题是在解决当前问题(i种物品)
     * 向i种物品时的背包添加第i种物品。
     * 推公式计算时,f[i][y] = max{f[i-1][y], (f[i][y-weight[i]]+value[i])},
     * 注意这里当考虑放入一个物品 i 时应当考虑还可能继续放入 i,
     * 因此这里是f[i][y-weight[i]]+value[i], 而不是f[i-1][y-weight[i]]+value[i]。
     * @param V
     * @param N
     * @param weight
     * @param value
     * @return
     */
    public static String completePack(int V,int N,int[] weight,int[] value){
        //初始化动态规划数组
        int[][] dp = new int[N+1][V+1];
        //为了便于理解,将dp[i][0]和dp[0][j]均置为0,从1开始计算
        for(int i=1;i j)
                    dp[i][j] = dp[i-1][j];
                else
                    dp[i][j] = Math.max(dp[i-1][j],dp[i][j-weight[i-1]]+value[i-1]);
            }
        }
        //则容量为V的背包能够装入物品的最大值为
        int maxValue = dp[N][V];
        int j=V;
        String numStr="";
        for(int i=N;i>0;i--){
            //若果dp[i][j]>dp[i-1][j],这说明第i件物品是放入背包的
            while(dp[i][j]>dp[i-1][j]){
                numStr = i+" "+numStr;
                j=j-weight[i-1];
            }
            if(j==0)
                break;
        }
        return numStr;
    }
    /**
     * 完全背包的第二种解法
     * 思路:
     * 只用一个一维数组记录状态,dp[i]表示容量为i的背包所能装入物品的最大价值
     * 用顺序来实现
     */
    public static int completePack2(int V,int N,int[] weight,int[] value){

        //动态规划
        int[] dp = new int[V+1];
        for(int i=1;i


--------------------- 
作者:lanyu_01 
来源:CSDN 
原文:https://blog.csdn.net/lanyu_01/article/details/79815801 
版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(剑指offer,背包算法,剑指offer,背包算法)