结合翻译的标准库一览(Python进阶学习)进行学习,可以更多的提高~
在程序运行的过程中,所有的变量都是在内存中,比如,定义一个dict:
d = dict(name='Bob', age=20, score=88)
可以随时修改变量,比如把name改成’Bill’,但是一旦程序结束,变量所占用的内存就被操作系统全部回收。如果没有把修改后的’Bill’存储到磁盘上,下次重新运行程序,变量又被初始化为’Bob’。
我们把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。
序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。
反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。
Python提供了pickle模块来实现序列化。
首先,我们尝试把一个对象序列化并写入文件:
>>> import pickle
>>> d = dict(name='Bob', age=20, score=88)
>>> pickle.dumps(d)
b'\x80\x03}q\x00(X\x03\x00\x00\x00ageq\x01K\x14X\x05\x00\x00\x00scoreq\x02KXX\x04\x00\x00\x00nameq\x03X\x03\x00\x00\x00Bobq\x04u.'
pickle.dumps()方法把任意对象序列化成一个bytes,然后,就可以把这个bytes写入文件。或者用另一个方法pickle.dump()直接把对象序列化后写入一个file-like Object:
>>> f = open('dump.txt', 'wb')
>>> pickle.dump(d, f)
>>> f.close()
看看写入的dump.txt文件,一堆乱七八糟的内容,这些都是Python保存的对象内部信息。
当我们要把对象从磁盘读到内存时,可以先把内容读到一个bytes,然后用pickle.loads()方法反序列化出对象,也可以直接用pickle.load()方法从一个file-like Object中直接反序列化出对象。我们打开另一个Python命令行来反序列化刚才保存的对象:
>>> f = open('dump.txt', 'rb')
>>> d = pickle.load(f)
>>> f.close()
>>> d
{'age': 20, 'score': 88, 'name': 'Bob'}
变量的内容又回来了!
当然,这个变量和原来的变量是完全不相干的对象,它们只是内容相同而已。
Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。
如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。
JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:
Python内置的json模块提供了非常完善的Python对象到JSON格式的转换。我们先看看如何把Python对象变成一个JSON:
>>> import json
>>> d = dict(name='Bob', age=20, score=88)
>>> json.dumps(d)
'{"age": 20, "score": 88, "name": "Bob"}'
dumps()方法返回一个str,内容就是标准的JSON。类似的,dump()方法可以直接把JSON写入一个file-like Object。
要把JSON反序列化为Python对象,用loads()或者对应的load()方法,前者把JSON的字符串反序列化,后者从file-like Object中读取字符串并反序列化:
>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}'
>>> json.loads(json_str)
{'age': 20, 'score': 88, 'name': 'Bob'}
由于JSON标准规定JSON编码是UTF-8,所以我们总是能正确地在Python的str与JSON的字符串之间转换。
Python的dict对象可以直接序列化为JSON的{},不过,很多时候,我们更喜欢用class表示对象,比如定义Student类,然后序列化:
import json
class Student(object):
def __init__(self, name, age, score):
self.name = name
self.age = age
self.score = score
s = Student('Bob', 20, 88)
print(json.dumps(s))
运行代码,毫不留情地得到一个TypeError:
Traceback (most recent call last):
...
TypeError: <__main__.Student object at 0x10603cc50> is not JSON serializable
错误的原因是Student对象不是一个可序列化为JSON的对象。
如果连class的实例对象都无法序列化为JSON,这肯定不合理!
别急,我们仔细看看dumps()方法的参数列表,可以发现,除了第一个必须的obj参数外,dumps()方法还提供了一大堆的可选参数:
https://docs.python.org/3/library/json.html#json.dumps
这些可选参数就是让我们来定制JSON序列化。前面的代码之所以无法把Student类实例序列化为JSON,是因为默认情况下,dumps()方法不知道如何将Student实例变为一个JSON的{}对象。
可选参数default就是把任意一个对象变成一个可序列为JSON的对象,我们只需要为Student专门写一个转换函数,再把函数传进去即可:
def student2dict(std):
return {
'name': std.name,
'age': std.age,
'score': std.score
}
这样,Student实例首先被student2dict()函数转换成dict,然后再被顺利序列化为JSON:
>>> print(json.dumps(s, default=student2dict))
{"age": 20, "name": "Bob", "score": 88}
不过,下次如果遇到一个Teacher类的实例,照样无法序列化为JSON。我们可以偷个懒,把任意class的实例变为dict:
print(json.dumps(s, default=lambda obj: obj.__dict__))
因为通常class的实例都有一个dict属性,它就是一个dict,用来存储实例变量。也有少数例外,比如定义了slots的class。
同样的道理,如果我们要把JSON反序列化为一个Student对象实例,loads()方法首先转换出一个dict对象,然后,我们传入的object_hook函数负责把dict转换为Student实例:
def dict2student(d):
return Student(d['name'], d['age'], d['score'])
运行结果如下:
>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}'
>>> print(json.loads(json_str, object_hook=dict2student))
<__main__.Student object at 0x10cd3c190>
打印出的是反序列化的Student实例对象。
Python语言特定的序列化模块是pickle,但如果要把序列化搞得更通用、更符合Web标准,就可以使用json模块。
json模块的dumps()和loads()函数是定义得非常好的接口的典范。当我们使用时,只需要传入一个必须的参数。但是,当默认的序列化或反序列机制不满足我们的要求时,我们又可以传入更多的参数来定制序列化或反序列化的规则,既做到了接口简单易用,又做到了充分的扩展性和灵活性。
datetime是Python处理日期和时间的标准库。
>>> from datetime import datetime
>>> now = datetime.now() # 获取当前datetime
>>> print(now)
2015-05-18 16:28:07.198690
>>> print(type(now))
<class 'datetime.datetime'>
注意到datetime是模块,datetime模块还包含一个datetime类,通过from datetime import datetime导入的才是datetime这个类。
如果仅导入import datetime,则必须引用全名datetime.datetime。
datetime.now()返回当前日期和时间,其类型是datetime。
要指定某个日期和时间,我们直接用参数构造一个datetime:
>>> from datetime import datetime
>>> dt = datetime(2015, 4, 19, 12, 20) # 用指定日期时间创建datetime
>>> print(dt)
2015-04-19 12:20:00
在计算机中,时间实际上是用数字表示的。我们把1970年1月1日 00:00:00 UTC+00:00时区的时刻称为epoch time,记为0(1970年以前的时间timestamp为负数),当前时间就是相对于epoch time的秒数,称为timestamp。
你可以认为:
timestamp = 0 = 1970-1-1 00:00:00 UTC+0:00
对应的北京时间是:
timestamp = 0 = 1970-1-1 08:00:00 UTC+8:00
可见timestamp的值与时区毫无关系,因为timestamp一旦确定,其UTC时间就确定了,转换到任意时区的时间也是完全确定的,这就是为什么计算机存储的当前时间是以timestamp表示的,因为全球各地的计算机在任意时刻的timestamp都是完全相同的(假定时间已校准)。
把一个datetime类型转换为timestamp只需要简单调用timestamp()方法:
>>> from datetime import datetime
>>> dt = datetime(2015, 4, 19, 12, 20) # 用指定日期时间创建datetime
>>> dt.timestamp() # 把datetime转换为timestamp
1429417200.0
注意Python的timestamp是一个浮点数。如果有小数位,小数位表示毫秒数。
某些编程语言(如Java和JavaScript)的timestamp使用整数表示毫秒数,这种情况下只需要把timestamp除以1000就得到Python的浮点表示方法。
要把timestamp转换为datetime,使用datetime提供的fromtimestamp()方法:
>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t))
2015-04-19 12:20:00
注意到timestamp是一个浮点数,它没有时区的概念,而datetime是有时区的。上述转换是在timestamp和本地时间做转换。
本地时间是指当前操作系统设定的时区。例如北京时区是东8区,则本地时间:
2015-04-19 12:20:00
实际上就是UTC+8:00时区的时间:
2015-04-19 12:20:00 UTC+8:00
而此刻的格林威治标准时间与北京时间差了8小时,也就是UTC+0:00时区的时间应该是:
2015-04-19 04:20:00 UTC+0:00
timestamp也可以直接被转换到UTC标准时区的时间:
>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t)) # 本地时间
2015-04-19 12:20:00
>>> print(datetime.utcfromtimestamp(t)) # UTC时间
2015-04-19 04:20:00
很多时候,用户输入的日期和时间是字符串,要处理日期和时间,首先必须把str转换为datetime。转换方法是通过datetime.strptime()实现,需要一个日期和时间的格式化字符串:
>>> from datetime import datetime
>>> cday = datetime.strptime('2015-6-1 18:19:59', '%Y-%m-%d %H:%M:%S')
>>> print(cday)
2015-06-01 18:19:59
字符串’%Y-%m-%d %H:%M:%S’规定了日期和时间部分的格式。详细的说明请参考Python文档。
注意转换后的datetime是没有时区信息的。
如果已经有了datetime对象,要把它格式化为字符串显示给用户,就需要转换为str,转换方法是通过strftime()实现的,同样需要一个日期和时间的格式化字符串:
>>> from datetime import datetime
>>> now = datetime.now()
>>> print(now.strftime('%a, %b %d %H:%M'))
Mon, May 05 16:28
对日期和时间进行加减实际上就是把datetime往后或往前计算,得到新的datetime。加减可以直接用+和-运算符,不过需要导入timedelta这个类:
>>> from datetime import datetime, timedelta
>>> now = datetime.now()
>>> now
datetime.datetime(2015, 5, 18, 16, 57, 3, 540997)
>>> now + timedelta(hours=10)
datetime.datetime(2015, 5, 19, 2, 57, 3, 540997)
>>> now - timedelta(days=1)
datetime.datetime(2015, 5, 17, 16, 57, 3, 540997)
>>> now + timedelta(days=2, hours=12)
datetime.datetime(2015, 5, 21, 4, 57, 3, 540997)
可见,使用timedelta你可以很容易地算出前几天和后几天的时刻。
本地时间是指系统设定时区的时间,例如北京时间是UTC+8:00时区的时间,而UTC时间指UTC+0:00时区的时间。
一个datetime类型有一个时区属性tzinfo,但是默认为None,所以无法区分这个datetime到底是哪个时区,除非强行给datetime设置一个时区:
>>> from datetime import datetime, timedelta, timezone
>>> tz_utc_8 = timezone(timedelta(hours=8)) # 创建时区UTC+8:00
>>> now = datetime.now()
>>> now
datetime.datetime(2015, 5, 18, 17, 2, 10, 871012)
>>> dt = now.replace(tzinfo=tz_utc_8) # 强制设置为UTC+8:00
>>> dt
datetime.datetime(2015, 5, 18, 17, 2, 10, 871012, tzinfo=datetime.timezone(datetime.timedelta(0, 28800)))
如果系统时区恰好是UTC+8:00,那么上述代码就是正确的,否则,不能强制设置为UTC+8:00时区。
我们可以先通过utcnow()拿到当前的UTC时间,再转换为任意时区的时间:
# 拿到UTC时间,并强制设置时区为UTC+0:00:
>>> utc_dt = datetime.utcnow().replace(tzinfo=timezone.utc)
>>> print(utc_dt)
2015-05-18 09:05:12.377316+00:00
# astimezone()将转换时区为北京时间:
>>> bj_dt = utc_dt.astimezone(timezone(timedelta(hours=8)))
>>> print(bj_dt)
2015-05-18 17:05:12.377316+08:00
# astimezone()将转换时区为东京时间:
>>> tokyo_dt = utc_dt.astimezone(timezone(timedelta(hours=9)))
>>> print(tokyo_dt)
2015-05-18 18:05:12.377316+09:00
# astimezone()将bj_dt转换时区为东京时间:
>>> tokyo_dt2 = bj_dt.astimezone(timezone(timedelta(hours=9)))
>>> print(tokyo_dt2)
2015-05-18 18:05:12.377316+09:00
时区转换的关键在于,拿到一个datetime时,要获知其正确的时区,然后强制设置时区,作为基准时间。
利用带时区的datetime,通过astimezone()方法,可以转换到任意时区。
注:不是必须从UTC+0:00时区转换到其他时区,任何带时区的datetime都可以正确转换,例如上述bj_dt到tokyo_dt的转换。
datetime表示的时间需要时区信息才能确定一个特定的时间,否则只能视为本地时间。
如果要存储datetime,最佳方法是将其转换为timestamp再存储,因为timestamp的值与时区完全无关。
collections是Python内建的一个集合模块,提供了许多有用的集合类。
我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:
>>> p = (1, 2)
但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。
定义一个class又小题大做了,这时,namedtuple就派上了用场:
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2
namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。
这样一来,我们用namedtuple可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。
可以验证创建的Point对象是tuple的一种子类:
>>> isinstance(p, Point)
True
>>> isinstance(p, tuple)
True
类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:
# namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])
使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:
>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])
deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。
使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict:
>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'
注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入。
除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的。
使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。
如果要保持Key的顺序,可以用OrderedDict:
>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:
>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> list(od.keys()) # 按照插入的Key的顺序返回
['z', 'y', 'x']
OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key:
from collections import OrderedDict
class LastUpdatedOrderedDict(OrderedDict):
def __init__(self, capacity):
super(LastUpdatedOrderedDict, self).__init__()
self._capacity = capacity
def __setitem__(self, key, value):
containsKey = 1 if key in self else 0
if len(self) - containsKey >= self._capacity:
last = self.popitem(last=False)
print('remove:', last)
if containsKey:
del self[key]
print('set:', (key, value))
else:
print('add:', (key, value))
OrderedDict.__setitem__(self, key, value)
Counter是一个简单的计数器,例如,统计字符出现的个数:
>>> from collections import Counter
>>> c = Counter()
>>> for ch in 'programming':
... c[ch] = c[ch] + 1
...
>>> c
Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})
Counter实际上也是dict的一个子类,上面的结果可以看出,
字符’g’、’m’、’r’各出现了两次,其他字符各出现了一次。
Base64是一种用64个字符来表示任意二进制数据的方法。
用记事本打开exe、jpg、pdf这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多无法显示和打印的字符,所以,如果要让记事本这样的文本处理软件能处理二进制数据,就需要一个二进制到字符串的转换方法。Base64是一种最常见的二进制编码方法。
Base64的原理很简单,首先,准备一个包含64个字符的数组:
['A', 'B', 'C', ... 'a', 'b', 'c', ... '0', '1', ... '+', '/']
然后,对二进制数据进行处理,每3个字节一组,一共是3x8=24bit,划为4组,每组正好6个bit
这样我们得到4个数字作为索引,然后查表,获得相应的4个字符,就是编码后的字符串。
所以,Base64编码会把3字节的二进制数据编码为4字节的文本数据,长度增加33%,好处是编码后的文本数据可以在邮件正文、网页等直接显示。
如果要编码的二进制数据不是3的倍数,最后会剩下1个或2个字节怎么办?Base64用\x00字节在末尾补足后,再在编码的末尾加上1个或2个=号,表示补了多少字节,解码的时候,会自动去掉。
Python内置的base64可以直接进行base64的编解码:
>>> import base64
>>> base64.b64encode(b'binary\x00string')
b'YmluYXJ5AHN0cmluZw=='
>>> base64.b64decode(b'YmluYXJ5AHN0cmluZw==')
b'binary\x00string'
由于标准的Base64编码后可能出现字符+和/,在URL中就不能直接作为参数,所以又有一种”url safe”的base64编码,其实就是把字符+和/分别变成-和_:
>>> base64.b64encode(b'i\xb7\x1d\xfb\xef\xff')
b'abcd++//'
>>> base64.urlsafe_b64encode(b'i\xb7\x1d\xfb\xef\xff')
b'abcd--__'
>>> base64.urlsafe_b64decode('abcd--__')
b'i\xb7\x1d\xfb\xef\xff'
还可以自己定义64个字符的排列顺序,这样就可以自定义Base64编码,不过,通常情况下完全没有必要。
Base64是一种通过查表的编码方法,不能用于加密,即使使用自定义的编码表也不行。
Base64适用于小段内容的编码,比如数字证书签名、Cookie的内容等。
由于=字符也可能出现在Base64编码中,但=用在URL、Cookie里面会造成歧义,所以,很多Base64编码后会把=去掉:
# 标准Base64:
'abcd' -> 'YWJjZA=='
# 自动去掉=:
'abcd' -> 'YWJjZA'
去掉=后怎么解码呢?因为Base64是把3个字节变为4个字节,所以,Base64编码的长度永远是4的倍数,因此,需要加上=把Base64字符串的长度变为4的倍数,就可以正常解码了。
Base64是一种任意二进制到文本字符串的编码方法,常用于在URL、Cookie、网页中传输少量二进制数据。
准确地讲,Python没有专门处理字节的数据类型。但由于str既是字符串,又可以表示字节,所以,字节数组=str。而在C语言中,我们可以很方便地用struct、union来处理字节,以及字节和int,float的转换。
在Python中,比方说要把一个32位无符号整数变成字节,也就是4个长度的bytes,你得配合位运算符这么写:
>>> n = 10240099
>>> b1 = (n & 0xff000000) >> 24
>>> b2 = (n & 0xff0000) >> 16
>>> b3 = (n & 0xff00) >> 8
>>> b4 = n & 0xff
>>> bs = bytes([b1, b2, b3, b4])
>>> bs
b'\x00\x9c@c'
非常麻烦。如果换成浮点数就无能为力了。
好在Python提供了一个struct模块来解决bytes和其他二进制数据类型的转换。
struct的pack函数把任意数据类型变成bytes:
>>> import struct
>>> struct.pack('>I', 10240099)
b'\x00\x9c@c'
pack的第一个参数是处理指令,’>I’的意思是:
表示字节顺序是big-endian,也就是网络序,I表示4字节无符号整数。
后面的参数个数要和处理指令一致。
unpack把bytes变成相应的数据类型:
>>> struct.unpack('>IH', b'\xf0\xf0\xf0\xf0\x80\x80')
(4042322160, 32896)
根据>IH的说明,后面的bytes依次变为I:4字节无符号整数和H:2字节无符号整数。
所以,尽管Python不适合编写底层操作字节流的代码,但在对性能要求不高的地方,利用struct就方便多了。
struct模块定义的数据类型可以参考Python官方文档:
https://docs.python.org/3/library/struct.html#format-characters
Windows的位图文件(.bmp)是一种非常简单的文件格式,我们来用struct分析一下。
首先找一个bmp文件,没有的话用“画图”画一个。
读入前30个字节来分析:
>>> s = b'\x42\x4d\x38\x8c\x0a\x00\x00\x00\x00\x00\x36\x00\x00\x00\x28\x00\x00\x00\x80\x02\x00\x00\x68\x01\x00\x00\x01\x00\x18\x00'
BMP格式采用小端方式存储数据,文件头的结构按顺序如下:
两个字节:’BM’表示Windows位图,’BA’表示OS/2位图;
一个4字节整数:表示位图大小;
一个4字节整数:保留位,始终为0;
一个4字节整数:实际图像的偏移量;
一个4字节整数:Header的字节数;
一个4字节整数:图像宽度;
一个4字节整数:图像高度;
一个2字节整数:始终为1;
一个2字节整数:颜色数。
所以,组合起来用unpack读取:
>>> struct.unpack(', s)
(b'B', b'M', 691256, 0, 54, 40, 640, 360, 1, 24)
Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等。
什么是摘要算法呢?摘要算法又称哈希算法、散列算法。它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制的字符串表示)。
举个例子,你写了一篇文章,内容是一个字符串’how to use python hashlib - by Michael’,并附上这篇文章的摘要是’2d73d4f15c0db7f5ecb321b6a65e5d6d’。如果有人篡改了你的文章,并发表为’how to use python hashlib - by Bob’,你可以一下子指出Bob篡改了你的文章,因为根据’how to use python hashlib - by Bob’计算出的摘要不同于原始文章的摘要。
可见,摘要算法就是通过摘要函数f()对任意长度的数据data计算出固定长度的摘要digest,目的是为了发现原始数据是否被人篡改过。
摘要算法之所以能指出数据是否被篡改过,就是因为摘要函数是一个单向函数,计算f(data)很容易,但通过digest反推data却非常困难。而且,对原始数据做一个bit的修改,都会导致计算出的摘要完全不同。
我们以常见的摘要算法MD5为例,计算出一个字符串的MD5值:
import hashlib
md5 = hashlib.md5()
md5.update('how to use md5 in python hashlib?'.encode('utf-8'))
print(md5.hexdigest())
计算结果如下:
d26a53750bc40b38b65a520292f69306
如果数据量很大,可以分块多次调用update(),最后计算的结果是一样的:
import hashlib
md5 = hashlib.md5()
md5.update('how to use md5 in '.encode('utf-8'))
md5.update('python hashlib?'.encode('utf-8'))
print(md5.hexdigest())
试试改动一个字母,看看计算的结果是否完全不同。
MD5是最常见的摘要算法,速度很快,生成结果是固定的128 bit字节,通常用一个32位的16进制字符串表示。
另一种常见的摘要算法是SHA1,调用SHA1和调用MD5完全类似:
import hashlib
sha1 = hashlib.sha1()
sha1.update('how to use sha1 in '.encode('utf-8'))
sha1.update('python hashlib?'.encode('utf-8'))
print(sha1.hexdigest())
SHA1的结果是160 bit字节,通常用一个40位的16进制字符串表示。
比SHA1更安全的算法是SHA256和SHA512,不过越安全的算法不仅越慢,而且摘要长度更长。
有没有可能两个不同的数据通过某个摘要算法得到了相同的摘要?完全有可能,因为任何摘要算法都是把无限多的数据集合映射到一个有限的集合中。这种情况称为碰撞,比如Bob试图根据你的摘要反推出一篇文章’how to learn hashlib in python - by Bob’,并且这篇文章的摘要恰好和你的文章完全一致,这种情况也并非不可能出现,但是非常非常困难。
摘要算法能应用到什么地方?举个常用例子:
任何允许用户登录的网站都会存储用户登录的用户名和口令。如何存储用户名和口令呢?方法是存到数据库表中:
name | password
--------+----------
michael | 123456
bob | abc999
alice | alice2008
如果以明文保存用户口令,如果数据库泄露,所有用户的口令就落入黑客的手里。此外,网站运维人员是可以访问数据库的,也就是能获取到所有用户的口令。
正确的保存口令的方式是不存储用户的明文口令,而是存储用户口令的摘要,比如MD5:
username | password
---------+---------------------------------
michael | e10adc3949ba59abbe56e057f20f883e
bob | 878ef96e86145580c38c87f0410ad153
alice | 99b1c2188db85afee403b1536010c2c9
当用户登录时,首先计算用户输入的明文口令的MD5,然后和数据库存储的MD5对比,如果一致,说明口令输入正确,如果不一致,口令肯定错误。
Python的内建模块itertools提供了非常有用的用于操作迭代对象的函数。
首先,我们看看itertools提供的几个“无限”迭代器:
>>> import itertools
>>> natuals = itertools.count(1)
>>> for n in natuals:
... print(n)
...
1
2
3
...
因为count()会创建一个无限的迭代器,所以上述代码会打印出自然数序列,根本停不下来,只能按Ctrl+C退出。
cycle()会把传入的一个序列无限重复下去:
>>> import itertools
>>> cs = itertools.cycle('ABC') # 注意字符串也是序列的一种
>>> for c in cs:
... print(c)
...
'A'
'B'
'C'
'A'
'B'
'C'
...
同样停不下来。
repeat()负责把一个元素无限重复下去,不过如果提供第二个参数就可以限定重复次数:
>>> ns = itertools.repeat('A', 3)
>>> for n in ns:
... print(n)
...
A
A
A
无限序列只有在for迭代时才会无限地迭代下去,如果只是创建了一个迭代对象,它不会事先把无限个元素生成出来,事实上也不可能在内存中创建无限多个元素。
无限序列虽然可以无限迭代下去,但是通常我们会通过takewhile()等函数根据条件判断来截取出一个有限的序列:
>>> natuals = itertools.count(1)
>>> ns = itertools.takewhile(lambda x: x <= 10, natuals)
>>> list(ns)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
itertools提供的几个迭代器操作函数更加有用:
chain()可以把一组迭代对象串联起来,形成一个更大的迭代器:
>>> for c in itertools.chain('ABC', 'XYZ'):
... print(c)
# 迭代效果:'A' 'B' 'C' 'X' 'Y' 'Z'
groupby()把迭代器中相邻的重复元素挑出来放在一起:
>>> for key, group in itertools.groupby('AAABBBCCAAA'):
... print(key, list(group))
...
A ['A', 'A', 'A']
B ['B', 'B', 'B']
C ['C', 'C']
A ['A', 'A', 'A']
实际上挑选规则是通过函数完成的,只要作用于函数的两个元素返回的值相等,这两个元素就被认为是在一组的,而函数返回值作为组的key。如果我们要忽略大小写分组,就可以让元素’A’和’a’都返回相同的key:
>>> for key, group in itertools.groupby('AaaBBbcCAAa', lambda c: c.upper()):
... print(key, list(group))
...
A ['A', 'a', 'a']
B ['B', 'B', 'b']
C ['c', 'C']
A ['A', 'A', 'a']
itertools模块提供的全部是处理迭代功能的函数,它们的返回值不是list,而是Iterator,只有用for循环迭代的时候才真正计算。
XML虽然比JSON复杂,在Web中应用也不如以前多了,不过仍有很多地方在用,所以,有必要了解如何操作XML。
操作XML有两种方法:DOM和SAX。DOM会把整个XML读入内存,解析为树,因此占用内存大,解析慢,优点是可以任意遍历树的节点。SAX是流模式,边读边解析,占用内存小,解析快,缺点是我们需要自己处理事件。
正常情况下,优先考虑SAX,因为DOM实在太占内存。
在Python中使用SAX解析XML非常简洁,通常我们关心的事件是start_element,end_element和char_data,准备好这3个函数,然后就可以解析xml了。
举个例子,当SAX解析器读到一个节点时:
<a href="/">pythona>
会产生3个事件:
start_element事件,在读取时;
char_data事件,在读取python时;
end_element事件,在读取时。
用代码实验一下:
from xml.parsers.expat import ParserCreate
class DefaultSaxHandler(object):
def start_element(self, name, attrs):
print('sax:start_element: %s, attrs: %s' % (name, str(attrs)))
def end_element(self, name):
print('sax:end_element: %s' % name)
def char_data(self, text):
print('sax:char_data: %s' % text)
xml = r'''
'''
handler = DefaultSaxHandler()
parser = ParserCreate()
parser.StartElementHandler = handler.start_element
parser.EndElementHandler = handler.end_element
parser.CharacterDataHandler = handler.char_data
parser.Parse(xml)
需要注意的是读取一大段字符串时,CharacterDataHandler可能被多次调用,所以需要自己保存起来,在EndElementHandler里面再合并。
除了解析XML外,如何生成XML呢?99%的情况下需要生成的XML结构都是非常简单的,因此,最简单也是最有效的生成XML的方法是拼接字符串:
L = []
L.append(r'')
L.append(r'' )
L.append(encode('some & data'))
L.append(r'')
return ''.join(L)
如果要生成复杂的XML呢?建议你不要用XML,改成JSON。
解析XML时,注意找出自己感兴趣的节点,响应事件时,把节点数据保存起来。解析完毕后,就可以处理数据。
如果我们要编写一个搜索引擎,第一步是用爬虫把目标网站的页面抓下来,第二步就是解析该HTML页面,看看里面的内容到底是新闻、图片还是视频。
假设第一步已经完成了,第二步应该如何解析HTML呢?
HTML本质上是XML的子集,但是HTML的语法没有XML那么严格,所以不能用标准的DOM或SAX来解析HTML。
好在Python提供了HTMLParser来非常方便地解析HTML,只需简单几行代码:
from html.parser import HTMLParser
from html.entities import name2codepoint
class MyHTMLParser(HTMLParser):
def handle_starttag(self, tag, attrs):
print('<%s>' % tag)
def handle_endtag(self, tag):
print('%s>' % tag)
def handle_startendtag(self, tag, attrs):
print('<%s/>' % tag)
def handle_data(self, data):
print(data)
def handle_comment(self, data):
print('')
def handle_entityref(self, name):
print('&%s;' % name)
def handle_charref(self, name):
print('%s;' % name)
parser = MyHTMLParser()
parser.feed('''
Some html HTML tutorial...
END
''')
feed()方法可以多次调用,也就是不一定一次把整个HTML字符串都塞进去,可以一部分一部分塞进去。
特殊字符有两种,一种是英文表示的 ,一种是数字表示的Ӓ,这两种字符都可以通过Parser解析出来。
小结
利用HTMLParser,可以把网页中的文本、图像等解析出来。
urllib提供了一系列用于操作URL的功能。
urllib的request模块可以非常方便地抓取URL内容,也就是发送一个GET请求到指定的页面,然后返回HTTP的响应:
例如,对豆瓣的一个URLhttps://api.douban.com/v2/book/2129650进行抓取,并返回响应:
from urllib import request
with request.urlopen('https://api.douban.com/v2/book/2129650') as f:
data = f.read()
print('Status:', f.status, f.reason)
for k, v in f.getheaders():
print('%s: %s' % (k, v))
print('Data:', data.decode('utf-8'))
可以看到HTTP响应的头和JSON数据:
Status: 200 OK
Server: nginx
Date: Tue, 26 May 2015 10:02:27 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 2049
Connection: close
Expires: Sun, 1 Jan 2006 01:00:00 GMT
Pragma: no-cache
Cache-Control: must-revalidate, no-cache, private
X-DAE-Node: pidl1
Data: {"rating":{"max":10,"numRaters":16,"average":"7.4","min":0},"subtitle":"","author":["廖雪峰编著"],"pubdate":"2007-6","tags":[{"count":20,"name":"spring","title":"spring"}...}
如果我们要想模拟浏览器发送GET请求,就需要使用Request对象,通过往Request对象添加HTTP头,我们就可以把请求伪装成浏览器。例如,模拟iPhone 6去请求豆瓣首页:
from urllib import request
req = request.Request('http://www.douban.com/')
req.add_header('User-Agent', 'Mozilla/6.0 (iPhone; CPU iPhone OS 8_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/8.0 Mobile/10A5376e Safari/8536.25')
with request.urlopen(req) as f:
print('Status:', f.status, f.reason)
for k, v in f.getheaders():
print('%s: %s' % (k, v))
print('Data:', f.read().decode('utf-8'))
这样豆瓣会返回适合iPhone的移动版网页:
...
"viewport" content="width=device-width, user-scalable=no, initial-scale=1.0, minimum-scale=1.0, maximum-scale=1.0">
"format-detection" content="telephone=no">
"apple-touch-icon" sizes="57x57" href="http://img4.douban.com/pics/cardkit/launcher/57.png" />
...
如果要以POST发送一个请求,只需要把参数data以bytes形式传入。
我们模拟一个微博登录,先读取登录的邮箱和口令,然后按照weibo.cn的登录页的格式以username=xxx&password=xxx的编码传入:
from urllib import request, parse
print('Login to weibo.cn...')
email = input('Email: ')
passwd = input('Password: ')
login_data = parse.urlencode([
('username', email),
('password', passwd),
('entry', 'mweibo'),
('client_id', ''),
('savestate', '1'),
('ec', ''),
('pagerefer', 'https://passport.weibo.cn/signin/welcome?entry=mweibo&r=http%3A%2F%2Fm.weibo.cn%2F')
])
req = request.Request('https://passport.weibo.cn/sso/login')
req.add_header('Origin', 'https://passport.weibo.cn')
req.add_header('User-Agent', 'Mozilla/6.0 (iPhone; CPU iPhone OS 8_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/8.0 Mobile/10A5376e Safari/8536.25')
req.add_header('Referer', 'https://passport.weibo.cn/signin/login?entry=mweibo&res=wel&wm=3349&r=http%3A%2F%2Fm.weibo.cn%2F')
with request.urlopen(req, data=login_data.encode('utf-8')) as f:
print('Status:', f.status, f.reason)
for k, v in f.getheaders():
print('%s: %s' % (k, v))
print('Data:', f.read().decode('utf-8'))
如果登录成功,我们获得的响应如下:
Status: 200 OK
Server: nginx/1.2.0
...
Set-Cookie: SSOLoginState=1432620126; path=/; domain=weibo.cn
...
Data: {"retcode":20000000,"msg":"","data":{...,"uid":"1658384301"}}
如果登录失败,我们获得的响应如下:
...
Data: {"retcode":50011015,"msg":"\u7528\u6237\u540d\u6216\u5bc6\u7801\u9519\u8bef","data":{"username":"[email protected]","errline":536}}
如果还需要更复杂的控制,比如通过一个Proxy去访问网站,我们需要利用ProxyHandler来处理,示例代码如下:
proxy_handler = urllib.request.ProxyHandler({'http': 'http://www.example.com:3128/'})
proxy_auth_handler = urllib.request.ProxyBasicAuthHandler()
proxy_auth_handler.add_password('realm', 'host', 'username', 'password')
opener = urllib.request.build_opener(proxy_handler, proxy_auth_handler)
with opener.open('http://www.example.com/login.html') as f:
pass
urllib提供的功能就是利用程序去执行各种HTTP请求。如果要模拟浏览器完成特定功能,需要把请求伪装成浏览器。伪装的方法是先监控浏览器发出的请求,再根据浏览器的请求头来伪装,User-Agent头就是用来标识浏览器的。
PIL:Python Imaging Library,已经是Python平台事实上的图像处理标准库了。PIL功能非常强大,但API却非常简单易用。
由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Python 3.x,又加入了许多新特性,因此,我们可以直接安装使用Pillow。
安装Pillow
在命令行下直接通过pip安装:
$ pip install pillow
如果遇到Permission denied安装失败,请加上sudo重试。
操作图像
来看看最常见的图像缩放操作,只需三四行代码:
from PIL import Image
# 打开一个jpg图像文件,注意是当前路径:
im = Image.open('test.jpg')
# 获得图像尺寸:
w, h = im.size
print('Original image size: %sx%s' % (w, h))
# 缩放到50%:
im.thumbnail((w//2, h//2))
print('Resize image to: %sx%s' % (w//2, h//2))
# 把缩放后的图像用jpeg格式保存:
im.save('thumbnail.jpg', 'jpeg')
其他功能如切片、旋转、滤镜、输出文字、调色板等一应俱全。
比如,模糊效果也只需几行代码:
from PIL import Image, ImageFilter
# 打开一个jpg图像文件,注意是当前路径:
im = Image.open('test.jpg')
# 应用模糊滤镜:
im2 = im.filter(ImageFilter.BLUR)
im2.save('blur.jpg', 'jpeg')
PIL的ImageDraw提供了一系列绘图方法,让我们可以直接绘图。比如要生成字母验证码图片:
from PIL import Image, ImageDraw, ImageFont, ImageFilter
import random
# 随机字母:
def rndChar():
return chr(random.randint(65, 90))
# 随机颜色1:
def rndColor():
return (random.randint(64, 255), random.randint(64, 255), random.randint(64, 255))
# 随机颜色2:
def rndColor2():
return (random.randint(32, 127), random.randint(32, 127), random.randint(32, 127))
# 240 x 60:
width = 60 * 4
height = 60
image = Image.new('RGB', (width, height), (255, 255, 255))
# 创建Font对象:
font = ImageFont.truetype('Arial.ttf', 36)
# 创建Draw对象:
draw = ImageDraw.Draw(image)
# 填充每个像素:
for x in range(width):
for y in range(height):
draw.point((x, y), fill=rndColor())
# 输出文字:
for t in range(4):
draw.text((60 * t + 10, 10), rndChar(), font=font, fill=rndColor2())
# 模糊:
image = image.filter(ImageFilter.BLUR)
image.save('code.jpg', 'jpeg')
我们用随机颜色填充背景,再画上文字,最后对图像进行模糊,得到验证码图片如下:
如果运行的时候报错:
IOError: cannot open resource
这是因为PIL无法定位到字体文件的位置,可以根据操作系统提供绝对路径,比如:
'/Library/Fonts/Arial.ttf'
要详细了解PIL的强大功能,请请参考Pillow官方文档:
https://pillow.readthedocs.org/