- 如何使用DeepSeek编写测试用例?
海姐软件测试
deepseek大数据测试工具
一、DeepSeek在测试用例设计中的定位DeepSeek作为AI工具,并非直接替代测试设计,而是通过以下方式提升效率:快速生成基础用例框架(等价类、边界值等)智能补充易遗漏场景(如特殊字符、异常流)自动化脚本片段生成(Python/pytest/JUnit等)测试数据构造建议(符合业务规则的Mock数据)二、四步法实战:AI协作编写测试用例Step1:明确需求输入输入质量决定输出质量,需向Dee
- 测试工程师Ai应用实战指南简例prompt
进击的雷神
prompt
阅读原文以下是一个真实具体的案例,展示测试工程师如何在不同阶段结合DeepSeek提升效率。案例基于电商平台"订单超时自动关闭"功能测试:案例背景项目名称:电商平台订单系统V2.3测试目标:验证"用户下单后30分钟未支付,订单自动关闭并释放库存"功能技术栈:SpringBoot+MySQL+Redis延迟队列1.需求分析阶段痛点:需求文档仅描述业务逻辑,未明确异常场景(如服务器时间不同步、Redi
- MiniMind:完全从 0 训练自己的大模型
三花AI
三花AI人工智能LLM大模型
是B站UP主近在远方的远开源的一个微型语言模型,改进自DeepSeek-V2、Llama3结构,项目包含整个数据处理、pretrain、sft、dpo的全部阶段,包含混合专家(MoE)模型。其目标是把上手LLM的门槛无限降低,直接从0开始训练一个极其轻量的语言模型,最低仅需2G显卡即可推理训练!
- 【Python】 Stacking: 强大的集成学习方法
音乐学家方大刚
Pythonpython集成学习开发语言
我们都找到天使了说好了心事不能偷藏着什么都一起做幸福得没话说把坏脾气变成了好沟通我们都找到天使了约好了负责对方的快乐阳光下的山坡你素描的以后怎么抄袭我脑袋想的薛凯琪《找到天使了》在机器学习中,单一模型的性能可能会受到其局限性和数据的影响。为了解决这个问题,我们可以使用集成学习(EnsembleLearning)方法。集成学习通过结合多个基模型的预测结果,来提高整体模型的准确性和稳健性。Stacki
- DeepSpeed-Chat:Reward Model【奖励模型】
u013250861
#LLM/训练RL/强化学习排序强化学习
第二阶段:奖励模型微调奖励模型(RM)微调类似于第一阶段有监督微调(SFT)。但是,RM和SFT微调之间存在几个关键差异:训练数据差异:对于SFT微调,数据是查询(query)和答案(answer)拼接在一起。然而,对于RM微调,每批数据由两个查询-答案对组成,即具有高分答案和低分答案的相同查询。这也导致了如下所述的第二个差异。训练目标差异:对于RW,训练目标是pairwiserankingsco
- 【二、DeepSeek应用场景与案例】10.农业智能化:DeepSeek如何助力精准种植与养殖?
代码世界的浪客
人工智能DeepSeek
一、引言1.1农业智能化的时代背景在全球人口持续增长的大趋势下,粮食需求正以前所未有的速度攀升。据联合国相关预测,到2050年,全球人口有望突破90亿,这无疑给本就压力重重的农业生产带来了更为艰巨的挑战,保障充足的粮食供应成为了迫在眉睫的任务。与此同时,资源短缺问题日益尖锐,耕地面积因城市化进程、土地退化等因素不断缩减,水资源分布不均且浪费严重,进一步加剧了农业生产的困境。根据世界银行的数据,过去
- 【DeepThinking】人生反思洞察之「知行合一」(经验贴)
碣石潇湘无限路
经验分享笔记生活人生深度思考知行合一
引言最近,我深刻体会到一种焦虑:既有生活的现实压力,也有对人生方向的迷茫与无奈。回顾自身,我发现这并不是物质层面的匮乏或欲望驱动,而是对“我是谁”“我想要什么”“我能做什么”的追问。这种焦虑,常常让我想起人的出生:起初我们依赖父母和环境,被动地活着;成年后,我们凭借主动学习、工作和不断积累的信念,去实现自我价值。但终有一天,我们会停下来审视自己,看清一些本质问题,并且发觉自己需要对这一生负责:我应
- 【人工智能】大模型的幻觉问题:DeepSeek 的解决策略与实践
蒙娜丽宁
Python杂谈人工智能人工智能
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界大语言模型(LLM)的“幻觉”问题,即模型生成与事实不符或脱离上下文的内容,是限制其广泛应用的关键挑战之一。本文深入探讨了幻觉问题的成因,包括训练数据的偏差、推理过程中的过度泛化以及缺乏外部验证机制。以DeepSeek系列模型为研究对象,我们分析了其在解
- 黑客攻击deepseek服务原理解析
大囚长
大模型机器学习黑客帝国人工智能
黑客可通过操纵大模型的连续对话上下文回顾机制,构造恶意请求以触发模型进入无限思考循环或超长上下文处理,从而形成对对话服务的DoS攻击(拒绝服务攻击)。这一攻击方式的核心在于利用大模型对上下文处理机制的脆弱性,通过极低的攻击成本实现资源耗尽。一、攻击原理与实现路径无限推理循环攻击通过输入特定构造的提示词(如“树中两条路径之间的距离”),诱导模型陷入无限思考链(Chain-of-Thought,CoT
- 企业微信机器人与DeepSeek结合实现交互的应用案例
老胖闲聊
办公自动化企业微信机器人交互
以下是一个结合企业微信机器人与深度求索(Deepseek)AIGC模型的交互式应用实现示例,包含完整代码及逐行注释:1.实现架构用户消息->企业微信服务器->自建服务端->DeepseekAPI->处理响应->返回企业微信群2.完整实现代码(deepseek_wechat_bot.py)#-*-coding:utf-8-*-importosimportjsonimportrequestsfromf
- 深度学习与目标检测系列(六) 本文约(4.5万字) | 全面解读复现ResNet | Pytorch |
小酒馆燃着灯
深度学习目标检测pytorch人工智能ResNet残差连接残差网络
文章目录解读Abstract—摘要翻译精读主要内容Introduction—介绍翻译精读背景RelatedWork—相关工作ResidualRepresentations—残差表达翻译精读主要内容ShortcutConnections—短路连接翻译精读主要内容DeepResidualLearning—深度残差学习ResidualLearning—残差学习翻译精读ResNet目的以前方法本文改进本质
- 量子位招聘 | DeepSeek帮我们改的招聘启事
量子位
关注前沿科技量子位未来同事,你好~这是一则招聘帖。如果你与我们志同道合,对AI大模型、具身智能、终端硬件、AI新媒体编辑感兴趣,我们正在招聘这些领域的原创作者。以下岗位均为全职,工作地点:北京中关村。岗位面向:社招、应届毕业生,所有岗位均可实习——表现出色均可转正加分项:乐于探索AI新工具,善用AI新工具;拥有解读论文的能力,能深入浅出讲解原理;有写代码能力;量子位长期读者。加入我们,你可以获得:
- Deepseek-R1-Distill-Llama-8B + Unsloth 中文医疗数据微调实战
LuckyAnJo
LLM相关llamapython自然语言处理人工智能
内容参考至博客与Bin_Nong1.环境搭建主要依赖的库(我的版本):torch==2.5.1unsloth==2025.2.15trl==0.15.2transformers==4.49.0datasets=3.3.1wandb==0.19.62.数据准备-medical_o1_sft_Chinese经过gpt-o1的包含cot(思考过程)的中文医疗问答数据,格式与内容如下:"Question"
- 法律行业——合同审查与AI律师
zhouyaowei1983
人工智能人工智能
一、引言:AI技术重构法律行业新格局随着AI技术从实验室走向规模化应用,法律行业正经历从“经验驱动”向“数据驱动”的范式转变。这一变革的核心驱动力源于法律服务的两大根本矛盾:传统人工服务效率瓶颈与市场对高精度、低成本法律产品的迫切需求。1.法律行业数字化转型的底层逻辑技术革命推手:以DeepSeekR1大模型为代表的开源AI技术,让法律文本解析、案例推理等复杂任务实现平民化应用
- 【JavaScript】11-JS高阶技巧
beibeibeiooo
JavaScript【已完结】javascript前端ecmascriptes6
本文介绍JS中的一些高阶技巧。目录1.深浅拷贝1.1浅拷贝1.2深拷贝1.2.1通过递归实现1.2.2lodash/cloneDeep1.2.3JSON.stringify()2.异常处理2.1throw抛异常2.2try/catch捕获异常2.3debugger3.处理this3.1this指向3.1.1普通函数this3.1.2箭头函数的this3.2改变this3.2.1call方法改变3.
- 本地部署deepseek-r1:14b 批量调用 Python调用本地deepseek-r1:14b实现对本地数据库的AI管理
朴拙Python交易猿
python数据库开发语言
这篇文章主要为大家详细介绍了Python如何基于DeepSeek模型,调用本地deepseek-r1:14b实现对本地数据库的AI管理场景描述基于DeepSeek模型,实现对本地数据库的AI管理。实现思路1、本地python+flask搭建个WEB,配置数据源。2、通过DeepSeek模型根据用户输入的文字需求,自动生成SQL语句。3、通过SQL执行按钮,实现对数据库的增删改查。模型服务方法1启动
- Qt for WebAssembly程序中文乱码问题处理过程
muren
Qtc++qtwasm开发语言
一、环境操作系统DeepinV23Qt版本6.8.2编程语言C++二、问题现象QtforWebAssembly应用在浏览器页面上英文字母显示正常,中文显示为乱码。经测试分析原因为默认字体不能正常显示汉字。三、处理过程1.准备中文字体文件从Windows下复制宋体简体字体文件。C:\Windows\Fonts\simsun.ttc2.添加资源文件resources.qrcsimsun.ttc3.Qt
- Deepseek-r1:14b+ScraperAPI实现联网本地大模型回答
FuWen_Hao
python人工智能
文章目录前言一、Deekseek本地部署二、SerpAPI1.什么是SerpAPI?2.如何使用SerpAPI进行Web搜索三、实现Deepseek-r1:14b+ScraperAPI实现联网本地大模型回答1.Code前言我需要对本地的Deepseek-r1:14b进行提问,我发现它对于实时的问题,或者不知道的问题,会不回答或者乱回答。基于这点我想通过WebAPI传输更多的信息给到Deekseek
- 大模型最新面试题系列:微调篇之微调基础知识
人肉推土机
大模型最新面试题集锦大全面试人工智能AI编程大模型微调LLM
一、全参数微调(Full-Finetune)vs参数高效微调(PEFT)对比1.显存使用差异全参数微调:需存储所有参数的梯度(如GPT-3175B模型全量微调需约2.3TB显存)PEFT:以LoRA为例,仅需存储低秩矩阵参数(7B模型使用r=16的LoRA时显存占用减少98%)实战经验:在A10080GB显存下,全量微调LLaMA-7B需DeepSpeedZero3优化,而LoRA可直接单卡运行2
- 一步到位!7大模型部署框架深度测评:从理论到DeepSeek R1:7B落地实战
人肉推土机
人工智能python
本文在掘金同步发布:文章地址更多优质文章,请关注本人掘金账号:人肉推土机的掘金账号随着大语言模型(LLM)的广泛应用,如何高效部署和推理模型成为开发者关注的核心问题。本文深入解析主流模型部署框架(Transformers、ModelScope、vLLM、LMDeploy、Ollama、SGLang、DeepSpeed),结合其技术原理、优缺点及适用场景,并提供DeepSeekR1:7B的详细部署实
- DeepSeek-R1核心技术深度解密:动态专家网络与多维注意力融合的智能架构实现全解析
Coderabo
DeepSeekR1模型企业级应用架构DeepSeek-R1
DeepSeek-R1智能架构核心技术揭秘:从动态路由到分布式训练的完整实现指南一、DeepSeek-R1架构设计原理1.1动态专家混合系统DeepSeek-R1采用改进型MoE(MixtureofExperts)架构,核心公式表达为:y=∑i=1nG(x
- GEO:在AI时代抢占DeepSeekC位?
白雪讲堂
人工智能
前言:当SEO遇见AGI——一场静默的流量革命在生成式AI日均处理53亿次查询的今天,传统SEO的「关键词-排名-点击」逻辑正在崩塌。DeepSeek、ChatGPT、豆包等大模型用动态生成的答案,悄然截流了68%的搜索需求。更残酷的是:当用户问"某个产品推荐"时,AI可能同时调用37个信源,却不会留下任何可追踪的搜索痕迹。这场革命迫使企业必须从「关键词优化」转向「场景占领」,从「流量争夺」进化到
- 强化学习中的深度卷积神经网络设计与应用实例
数字扫地僧
计算机视觉cnn人工智能神经网络
I.引言强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,通过与环境的交互来学习最优策略。深度学习,特别是深度卷积神经网络(DeepConvolutionalNeuralNetworks,DCNNs)的引入,为强化学习在处理高维度数据方面提供了强大工具。本文将探讨强化学习中深度卷积神经网络的设计原则及其在不同应用场景中的实例。II.深度卷积神经网络在强化学习中的
- 使用DeepEval进行LLM的单元测试
VYSAHF
单元测试log4jpython
在构建大语言模型(LLM)时,测试是确保模型行为和性能的关键步骤。ConfidentAI推出的DeepEval提供了一套完整的工具包,帮助开发者进行LLM的单元测试和集成测试。结合这些功能,你可以快速迭代,创建更健壮的语言模型。技术背景介绍DeepEval是ConfidentAI开发的一个包,用于语言模型的单元测试和集成测试。它的目标是让开发者能够通过合成数据创建、测试和优化模型,从而实现更高效的
- 腾讯云大模型知识引擎与DeepSeek:打造懒人专属的谷歌浏览器翻译插件
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3腾讯云云计算
摘要:随着人工智能技术的飞速发展,越来越多的前沿技术和工具已走入日常生活。翻译工具作为跨语言沟通的桥梁,一直处于技术创新的风口浪尖。本文探讨了腾讯云大模型知识引擎与DeepSeek结合谷歌浏览器插件的可能性,旨在为用户提供一种便捷、高效的翻译体验。通过应用深度学习、自然语言处理和知识图谱技术,该插件不仅能实时翻译网页内容,还能根据上下文进行智能推荐,实现精准的语境转换。本文将详细阐述其设计思路、技
- DeepSeek-R1大模型微调技术深度解析:架构、方法与应用全解析
大势下的牛马
搭建本地gpt架构deepseek微调
1.DeepSeek-R1大模型架构设计与技术特性1.1架构设计DeepSeek-R1作为超大规模语言模型,其核心架构设计包含以下创新:专家混合架构(MoE)采用6710亿参数的混合专家架构(MoE),每个推理过程仅激活370亿参数,实现计算效率与资源利用率的突破性提升。Transformer框架增强基于改进型Transformer架构,结合多头注意力机制(MLA)与动态权重分配技术,优化了长程依
- DeepSeek 模型未来怎么走?技术创新、行业落地全解析!
网罗开发
AI大模型人工智能人工智能职场和发展
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- AI学习教程DeepSeek使用教程合集 免费下载
oneboxai
学习
1.DeepSeek本地部署2.Deepseek搭建个人知识库3.DeepSeek提示词详解4.Deepseek使用技巧大全5.DeepSeek提示词大全6.DeepSeek保姆级新手教程7.DeepSeek各类应用8.Deepseek写小说9.DeepSeekV3部署教程10.DeepseekwordExcel11.Deepseek科研论文12.Deepseek开发游戏13.大模型通用一-A1指
- 分享12个国内AI对话聊天的免费网站(含DeepSeek大模型)
码上飞扬
人工智能语言模型DeepSeek
在人工智能领域,基于对话的语言模型已成为当前研究的热点,其中以ChatGPT为代表的模型凭借其卓越的语言理解与交互能力备受瞩目。为帮助用户更好地选择和使用这类AI工具,本文将介绍12个国内可直接体验对话聊天功能的平台,为用户提供实用参考。1、腾讯元宝地址:https://hunyuan.tencent.com/bot/chat腾讯混元大模型是由腾讯全链路自研的通用大语言模型,拥有超千亿参数规模,预
- 不会用AI大模型的程序员,5年后必将被淘汰?真相远比你想的更残酷!
小城哇哇
人工智能语言模型AI大模型DeepSeekOpenAIagi程序员
前言在技术飞速发展的今天,AI大模型已经成为程序员技能库中的“标配”。如果你还认为AI只是“锦上添花”的工具,那么5年后,你可能真的会被时代无情淘汰。这不是危言耸听,而是技术变革的必然趋势。AI大模型:程序员的“效率革命”AI大模型如DeepSeek等工具,正在彻底改变程序员的开发模式。它们不仅能自动生成代码、优化算法,还能快速解决复杂的技术问题。过去需要几天甚至几周才能完成的任务,现在可能只需要
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不