推荐一个大佬写的博客:点这里
数据结构写的很详细,膜拜~~
1、树 |
线性表、栈和队列都是由一系列元素构成的线性结构。
二叉树( binary tree)是一种层次结构 它要么是空集,要么是由一个称为根( root ) 的元素和两棵不同的二叉树
组成的,这两棵二叉树分别称为左子树( left subtree) 和右子树、(right subtree) 。允许这两棵子树中的一棵或者两棵为空。
一条路径的高度( height ) 对于任意节点n,n的高度为从n到一片树叶的最长路径长,所有树叶的高度为0;
一个结点的深度( depth) 对于任意节点n,n的深度为从根到n的唯一路径长,根的深度为0;
层(level) 我们将一棵树中具有某个给定深度的所有结点的集合称为该树的层( level) 。
兄弟结点 (sibling) 是共享同一父结点的结点。
子结点 一个结点的左(右)子树的根结点称为这个结点的左(右)子结点( left ( right) child) 。
叶结点 (leaf) 没有子结点的结点称为叶结点( leaf) 。
非空树的高度为从根结点到最远的叶结点的路径长度。
只有一个结点的树高度为0 。习惯上,将空树的高度定为 -1 。
树的一些特性:
2、二叉查找树 |
二叉查找树(binary search tree , BST) 特殊类型的二叉树。
二叉查找树(没有重复元素)的特征是:
对于树中的每一个结点,它的左子树中结点的值都小于该结点的值,而它的右子树中结点的值都大于该结点的值。
3、实现 |
首先,定义Node.java
public class Node {
int data; //节点数据
Node leftChild; //左子节点的引用
Node rightChild; //右子节点的引用
boolean isDelete;//表示节点是否被删除
public Node(int data){
this.data = data;
}
//打印节点内容
public void display(){
System.out.println(data);
}
}
在定义Tree接口
public interface Tree {
//查找节点
public Node find(int key);
//插入新节点
public boolean insert(int data);
//中序遍历
public void infixOrder(Node current);
//前序遍历
public void preOrder(Node current);
//后序遍历
public void postOrder(Node current);
//查找最大值
public Node findMax();
//查找最小值
public Node findMin();
//删除节点
public boolean delete(int key);
//Other Method......
}
最后,在BinaryTree.java中实现各个方法
查找结点 |
public Node find(int key){
Node current = root;
while(current != null){
if(current.data > key)
current = current.leftChild;
else if(current.data < key)
current = current.rightChild;
else return current;
}
return null;
}
用变量current来保存当前查找的节点,参数key是要查找的值,刚开始查找将根节点赋值到current。接在在while循环中,将要查找的值和current保存的节点进行对比。如果key小于当前节点,则搜索当前节点的左子节点,如果大于,则搜索右子节点,如果等于,则直接返回节点信息。当整个树遍历完全,即current == null,那么说明没找到查找值,返回null。
树的效率:查找节点的时间取决于这个节点所在的层数,每一层最多有2n-1个节点,总共N层共有2n-1个节点,那么时间复杂度为O(logN),底数为2。
插入结点 |
要插入节点,必须先找到插入的位置。与查找操作相似,由于二叉搜索树的特殊性,待插入的节点也需要从根节点开始进行比较,小于根节点则与根节点左子树比较,反之则与右子树比较,直到左子树为空或右子树为空,则插入到相应为空的位置,在比较的过程中要注意保存父节点的信息 及 待插入的位置是父节点的左子树还是右子树,才能插入到正确的位置。
//插入新节点
public boolean insert(int data){
Node newNode = new Node(data);
if(root == null){
root = newNode;
return true;
}
else{
Node current = root;
Node parentNode = null;
while(current != null){
parentNode = root;
if(current.data > data) {
current = current.leftChild;
if(current == null)
parentNode.leftChild = newNode;
return true;
}
else{
current = current.rightChild;
if(current == null)
parentNode.rightChild = newNode;
return true;
}
}
}
return false;
}
遍历树 |
①、中序遍历:左子树——》根节点——》右子树
②、前序遍历:根节点——》左子树——》右子树
③、后序遍历:左子树——》右子树——》根节点
//中序遍历
public void infixOrder(Node current){
if(current != null){
infixOrder(current.leftChild);
System.out.print(current.data + " " );
infixOrder(current.rightChild);
}
}
//前序遍历
public void preOrder(Node current){
if(current != null){
System.out.print(current.data + " ");
preOrder(current.leftChild);
preOrder(current.rightChild);
}
}
//后序遍历
public void postOrder(Node current){
if(current != null){
postOrder(current.leftChild);
postOrder(current.rightChild);
System.out.print(current.data + " ");
}
}
查找最大值和最小值 |
要找最小值,先找根的左节点,然后一直找这个左节点的左节点,直到找到没有左节点的节点,那么这个节点就是最小值。同理要找最大值,一直找根节点的右节点,直到没有右节点,则就是最大值。
//查找最大值
public Node findMax(){
Node current = root;
Node maxNode = current;
while(current != null){
maxNode = current;
current = current.rightChild;
}
return maxNode;
}
//查找最小值
public Node findMin(){
Node current = root;
Node minNode = current;
while(current != null){
minNode = current;
current = current.leftChild;
}
return minNode;
}
删除结点 |
删除节点是二叉搜索树中最复杂的操作,删除的节点有三种情况,前两种比较简单,但是第三种却很复杂。
1、该节点是叶节点(没有子节点)
2、该节点有一个子节点
3、该节点有两个子节点
//删除节点
public boolean delete(int key) {
Node current = root;
Node parent = root;
boolean isLeftChild = false;
while (current.data != key) {
parent = current;
if (current.data > key) {
isLeftChild = true;
current = current.leftChild;
} else {
isLeftChild = false;
current = current.rightChild;
}
if (current == null)
return false;
}
//如果当前节点没有子节点
if (current.leftChild == null && current.rightChild == null) {
if (current == root)
root = null;
else if (isLeftChild)
parent.leftChild = null;
else
parent.rightChild = null;
return true;
}
//如果要删除结点有一个子节点 : 有左子节点
else if (current.leftChild != null && current.rightChild == null) {
if (current == root) {
root = current.leftChild;
} else if (isLeftChild) {
parent.leftChild = current.leftChild;
} else {
parent.rightChild = current.leftChild;
}
return true;
}
//如果要删除结点有一个子节点 : 有右子节点
else if (current.leftChild == null && current.rightChild != null) {
if (current == root) {
root = current.rightChild;
} else if (isLeftChild) {
parent.leftChild = current.rightChild;
} else {
parent.rightChild = current.rightChild;
}
return true;
}
//如果要删除的节点有两个子节点
else{
Node successor = getSuccessor(current);
if(current == root){
root= successor;
}else if(isLeftChild){
parent.leftChild = successor;
}else{
parent.rightChild = successor;
}
successor.leftChild = current.leftChild; // ?????
}
return false;
}
public Node getSuccessor(Node delNode){
Node successorParent = delNode;
Node successor = delNode;
Node current = delNode.rightChild;
while(current != null){
successorParent = successor;
successor = current;
current = current.leftChild;
}
//后继节点不是删除节点的右子节点,将后继节点替换删除节点
if(successor != delNode.rightChild){
successorParent.leftChild = successor.rightChild;
successor.rightChild = delNode.rightChild;
}
return successor;
}
测试 |
public static void main(String[] args) {
BinaryTree bt = new BinaryTree();
bt.insert(50);
bt.insert(20);
bt.insert(80);
bt.insert(10);
bt.insert(30);
bt.insert(60);
bt.insert(90);
bt.insert(25);
bt.insert(85);
bt.insert(12);
bt.delete(10);//删除没有子节点的节点
bt.delete(30);//删除有一个子节点的节点
bt.delete(80);//删除有两个子节点的节点
System.out.println(bt.findMax().data);
System.out.println(bt.findMin().data);
System.out.println(bt.find(30));
System.out.println(bt.find(20));
}
完整程序 |
public class BinaryTree implements Tree {
//表示根节点
private Node root;
//查找节点
public Node find(int key) {
Node current = root;
while(current != null){
if(current.data > key){//当前值比查找值大,搜索左子树
current = current.leftChild;
}else if(current.data < key){//当前值比查找值小,搜索右子树
current = current.rightChild;
}else{
return current;
}
}
return null;//遍历完整个树没找到,返回null
}
//插入节点
public boolean insert(int data) {
Node newNode = new Node(data);
if(root == null){//当前树为空树,没有任何节点
root = newNode;
return true;
}else{
Node current = root;
Node parentNode = null;
while(current != null){
parentNode = current;
if(current.data > data){//当前值比插入值大,搜索左子节点
current = current.leftChild;
if(current == null){//左子节点为空,直接将新值插入到该节点
parentNode.leftChild = newNode;
return true;
}
}else{
current = current.rightChild;
if(current == null){//右子节点为空,直接将新值插入到该节点
parentNode.rightChild = newNode;
return true;
}
}
}
}
return false;
}
//中序遍历
public void infixOrder(Node current){
if(current != null){
infixOrder(current.leftChild);
System.out.print(current.data+" ");
infixOrder(current.rightChild);
}
}
//前序遍历
public void preOrder(Node current){
if(current != null){
System.out.print(current.data+" ");
infixOrder(current.leftChild);
infixOrder(current.rightChild);
}
}
//后序遍历
public void postOrder(Node current){
if(current != null){
infixOrder(current.leftChild);
infixOrder(current.rightChild);
System.out.print(current.data+" ");
}
}
//找到最大值
public Node findMax(){
Node current = root;
Node maxNode = current;
while(current != null){
maxNode = current;
current = current.rightChild;
}
return maxNode;
}
//找到最小值
public Node findMin(){
Node current = root;
Node minNode = current;
while(current != null){
minNode = current;
current = current.leftChild;
}
return minNode;
}
@Override
public boolean delete(int key) {
Node current = root;
Node parent = root;
boolean isLeftChild = false;
//查找删除值,找不到直接返回false
while(current.data != key){
parent = current;
if(current.data > key){
isLeftChild = true;
current = current.leftChild;
}else{
isLeftChild = false;
current = current.rightChild;
}
if(current == null){
return false;
}
}
//如果当前节点没有子节点
if(current.leftChild == null && current.rightChild == null){
if(current == root){
root = null;
}else if(isLeftChild){
parent.leftChild = null;
}else{
parent.rightChild = null;
}
return true;
//当前节点有一个子节点,右子节点
}else if(current.leftChild == null && current.rightChild != null){
if(current == root){
root = current.rightChild;
}else if(isLeftChild){
parent.leftChild = current.rightChild;
}else{
parent.rightChild = current.rightChild;
}
return true;
//当前节点有一个子节点,左子节点
}else if(current.leftChild != null && current.rightChild == null){
if(current == root){
root = current.leftChild;
}else if(isLeftChild){
parent.leftChild = current.leftChild;
}else{
parent.rightChild = current.leftChild;
}
return true;
}else{
//当前节点存在两个子节点
Node successor = getSuccessor(current);
if(current == root){
root= successor;
}else if(isLeftChild){
parent.leftChild = successor;
}else{
parent.rightChild = successor;
}
successor.leftChild = current.leftChild;
}
return false;
}
public Node getSuccessor(Node delNode){
Node successorParent = delNode;
Node successor = delNode;
Node current = delNode.rightChild;
while(current != null){
successorParent = successor;
successor = current;
current = current.leftChild;
}
//后继节点不是删除节点的右子节点,将后继节点替换删除节点
if(successor != delNode.rightChild){
successorParent.leftChild = successor.rightChild;
successor.rightChild = delNode.rightChild;
}
return successor;
}
public static void main(String[] args) {
BinaryTree bt = new BinaryTree();
bt.insert(50);
bt.insert(20);
bt.insert(80);
bt.insert(10);
bt.insert(30);
bt.insert(60);
bt.insert(90);
bt.insert(25);
bt.insert(85);
bt.insert(12);
bt.delete(10);//删除没有子节点的节点
bt.delete(30);//删除有一个子节点的节点
bt.delete(80);//删除有两个子节点的节点
System.out.println(bt.findMax().data);
System.out.println(bt.findMin().data);
System.out.println(bt.find(30));
System.out.println(bt.find(20));
}
}