错位相减

如果数列 1 , 1 + 2 , 1 + 2 + 4 , ⋯   , 1 + 2 + 2 2 + 2 3 + ⋯ + 2 n − 1 , ⋯ 1,1+2,1+2+4,\cdots,1+2+2^2+2^3+\cdots+2^{n-1},\cdots 1,1+2,1+2+4,,1+2+22+23++2n1, 的前 n n n 项和 S n > 1020 S_n>1020 Sn>1020 n n n 的最小值为(      \;\;
A . 7 A. 7 A.7
B . 8 B. 8 B.8
C . 9 C. 9 C.9
D . 10 D. 10 D.10

[解析]
因为 S n = n ⋅ 2 0 + ( n − 1 ) ⋅ 2 1 + ( n − 2 ) ⋅ 2 2 + ⋯ + 1 ⋅ 2 n − 1 ⋯ ( 1 ) S_n=n\cdot2^0+(n-1)\cdot2^1+(n-2)\cdot2^2+\cdots+1\cdot2^{n-1}\quad\cdots\quad(1) Sn=n20+(n1)21+(n2)22++12n1(1) 2 S n = n ⋅ 2 1 + ( n − 1 ) ⋅ 2 2 + ( n − 2 ) ⋅ 2 3 + ⋯ + 1 ⋅ 2 n ⋯ ( 2 ) 2S_n=n\cdot2^1+(n-1)\cdot2^2+(n-2)\cdot2^3+\cdots+1\cdot2^{n}\quad\cdots\quad(2) 2Sn=n21+(n1)22+(n2)23++12n(2)(2)-(1)得: S n = − n + 2 1 + 2 2 + ⋯ + 2 n − 1 + 2 n = 2 n + 1 − n − 2 S_n=-n+2^1+2^2+\cdots+2^{n-1}+2^n=2^{n+1}-n-2 Sn=n+21+22++2n1+2n=2n+1n2可知 S 9 = 1013    ,    S 10 = 2035 S_9=1013\;,\;S_{10}=2035 S9=1013,S10=2035故答案选 D.


[法二]
由题意知 a n − a n − 1 = 2 n − 1 a_n-a_{n-1}=2^{n-1} anan1=2n1所以 a 2 − a 1 = 2 a_2-a_1=2 a2a1=2 a 3 − a 2 = 2 2 a_3-a_2=2^2 a3a2=22 a 4 − a 3 = 2 3 a_4-a_3=2^3 a4a3=23 ⋯ \cdots a n − a n − 1 = 2 n − 1 a_n-a_{n-1}=2^{n-1} anan1=2n1累加得: a n = 1 + 2 + 2 2 + ⋯ + 2 n − 1 = 2 n − 1 a_n=1+2+2^2+\cdots+2^{n-1}=2^n-1 an=1+2+22++2n1=2n1所以 S n = 2 n + 1 − n − 2. S_n=2^{n+1}-n-2. Sn=2n+1n2.

你可能感兴趣的:(高中数学知识)