放缩法

已知数列 { a n } \{a_n\} {an}满足 a 1 = 1 , a n + 1 = 3 a n + 1. a_1=1,a_{n+1}=3a_n+1. a1=1,an+1=3an+1.
(1)证明: { a n + 1 2 } \{a_n+\dfrac{1}{2}\} {an+21}是等比数列,并求 { a n } \{a_n\} {an}的通项公式;
(2)证明: 1 a 1 + 1 a 2 + ⋯ + 1 a n < 3 2 . \dfrac{1}{a_1}+\dfrac{1}{a_2}+\cdots+\dfrac{1}{a_n}<\dfrac{3}{2}. a11+a21++an1<23.

[解析]
(1)由题意有 a n + 1 + 1 2 = 3 ( a n + 1 2 ) a_{n+1}+\dfrac{1}{2}=3(a_n+\dfrac{1}{2}) an+1+21=3(an+21) 所以 { a n + 1 2 } \{a_n+\dfrac{1}{2}\} {an+21} 是以 3 2 \dfrac{3}{2} 23 为首项, 3 3 3 为公比的等比数列;解得 a n = 3 n − 1 2 . a_n=\dfrac{3^n-1}{2}. an=23n1.

(2)因为当 n > 1 n>1 n>1 2 3 n − 1 < 1 3 n − 1 \dfrac{2}{3^n-1}<\dfrac{1}{3^{n-1}} 3n12<3n11
1 a 1 + 1 a 2 + ⋯ + 1 a n \dfrac{1}{a_1}+\dfrac{1}{a_2}+\cdots+\dfrac{1}{a_n}\quad\quad\quad\quad a11+a21++an1 = 2 3 − 1 + 2 3 2 − 1 + ⋯ + 2 3 n − 1 =\dfrac{2}{3-1}+\dfrac{2}{3^2-1}+\cdots+\dfrac{2}{3^n-1} =312+3212++3n12 < 1 + 1 3 + 1 3 2 + ⋯ + 1 3 n − 1 <1+\dfrac{1}{3}+\dfrac{1}{3^2}+\cdots+\dfrac{1}{3^{n-1}}\quad\quad\quad <1+31+321++3n11 = 3 2 − 1 2 ⋅ 3 n − 1 < 3 2 =\dfrac{3}{2}-\dfrac{1}{2\cdot3^{n-1}}<\dfrac{3}{2}\quad\quad\quad\quad\quad\quad =2323n11<23 n = 1 n=1 n=1 时,显然成立;得证.

你可能感兴趣的:(高中数学知识)