对keras训练过程中loss,val_loss,以及accuracy,val_accuracy的可视化

    hist = model.fit_generator(generator=data_generator_reg(X=x_train, Y=[y_train_a,y_train_g], batch_size=batch_size),
                                   steps_per_epoch=train_num // batch_size,
                                   validation_data=(x_test, [y_test_a,y_test_g]),
                                   epochs=nb_epochs, verbose=1,
                                   workers=8, use_multiprocessing=True,
                                   callbacks=callbacks)

    logging.debug("Saving weights...")
    model.save_weights(os.path.join(db_name+"_models/"+save_name, save_name+'.h5'), overwrite=True)
    pd.DataFrame(hist.history).to_hdf(os.path.join(db_name+"_models/"+save_name, 'history_'+save_name+'.h5'), "history")

在训练时,会输出如下打印:

640/640 [==============================] - 35s 55ms/step - loss: 4.0216 - mean_absolute_error: 4.6525 - val_loss: 3.2888 - val_mean_absolute_error: 3.9109

有训练loss,训练预测准确度,以及测试loss,以及测试准确度,将文件保存后,使用下面的代码可以对训练以及评估进行可视化,下面有对应的参数名称:
loss,mean_absolute_error,val_loss,val_mean_absolute_error

import pandas as pd
import matplotlib.pyplot as plt
import argparse
import os
import numpy as np

def get_args():
    parser = argparse.ArgumentParser(description="This script shows training graph from history file.")
    parser.add_argument("--input", "-i", type=str, required=True,
                        help="path to input history h5 file")
    args = parser.parse_args()
    return args


def main():
    args = get_args()
    input_path = args.input

    df = pd.read_hdf(input_path, "history")
    print(np.min(df['val_mean_absolute_error']))
    input_dir = os.path.dirname(input_path)
    plt.plot(df["loss"], '-o', label="loss (age)", linewidth=2.0)
    plt.plot(df["val_loss"], '-o', label="val_loss (age)", linewidth=2.0)
    plt.xlabel("Number of epochs", fontsize=20)
    plt.ylabel("Loss", fontsize=20)
    plt.legend()
    plt.grid()
    plt.savefig(os.path.join(input_dir, "loss.pdf"), bbox_inches='tight', pad_inches=0)
    plt.cla()

    plt.plot(df["mean_absolute_error"], '-o', label="training", linewidth=2.0)
    plt.plot(df["val_mean_absolute_error"], '-o', label="validation", linewidth=2.0)
    ax = plt.gca()
    ax.set_ylim([2,13])
    ax.set_aspect(0.6/ax.get_data_ratio())
    plt.xticks(fontsize=20)
    plt.yticks(fontsize=20)
    plt.xlabel("Number of epochs", fontsize=20)
    plt.ylabel("Mean absolute error", fontsize=20)
    plt.legend(fontsize=20)
    plt.grid()
    plt.savefig(os.path.join(input_dir, "performance.pdf"), bbox_inches='tight', pad_inches=0)


if __name__ == '__main__':
    main()

你可能感兴趣的:(图像处理(image,processing),机器学习(machine,learning),python)