标签: dsp仿真 |
分类: DSP |
I2C(Inter-Integrated Circuit)总线是由 PHILIPS 公司开发的两线式串行总线,是一种具有多端控制能力向串行数据总线系统,用于连接微控制器及其外围设备。
准确的读法应该是I的平方C,即I^2C。以后就简写成I2C模块。
I2C模块通过I2C总线为DSP和其他符合PHILIPS半导体内部集成电路总线规格(PHILIPS半导体I2C总线规范)的设备提供了接口。I2C总线是一种两线制串行总线,与其相连的外部器件可以发送1~8位数据到DSP,或者从DSP接收1~8位数据。通过I2C模块传输或接收到的一个单位的数据可以少于8位。
I2C模块支持任何主/从I2C兼容设备,多个I2C模块连接在总线上实现多个器件间的数据双向传输。
一.I2C模块的主要特征
1.与PHILIPS半导体I2C总线规范兼容(2.1版)
2.一个16位接收FIFO和一个16位发送FIFO
3.一个可以随时被CPU使用的中断
4.在FIFO模式下可被CPU使用的附加中断
5.有自有数据格式模式
6.不支持以下功能:
二.I2C模块的性能与功能
I2C是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。I2C模块允许一个或多个支持I2C总线功能的器件连接在同一条总线上。
对于数据通信,I2C模块有一个串行数据引脚SDA和一个串行时钟引脚SCL。这两个引脚在280x器件和连接到I2C总线上的其他器件之间传送信息。SDA和SCL两个引脚均是双向的。它们必须通过上拉电阻接到正电压。当总线空闲时,两个引脚均为高电平。
(1)两种主要的传输模式
(2)I2C模块的主要组成
I2C模块结构框图如上图,主要包含:
上图也给出了非FIFO模式下数据发送和接收的操作方式。CPU将需要发送的数据写入到I2CDXR,并从I2CDRR中读取接收到的数据。当I2C模块配置成发送器时,写入到I2CDXR的数据被复制到I2CXSR中,并逐位地移出到SDA引脚上;当I2C模块配置成接收器时,接收到的数据先移入到I2CRSR,再复制到I2CDRR中。
三.时钟产生源
如图所示:
DSP时钟产生器从外部时钟源接收信号,产生一个频率可编程的I2C输入时钟。I2C输入时钟为CPU时钟,在I2C内部经过两倍以上分频后产生I2C模块时钟和主机时钟。
模块时钟决定了I2C模块以什么频率工作。I2C模块的可编程分频器通过对输入时钟分频得到模块时钟。配置分频器寄存器的IPSC位可确定分频器的值。模块时钟频率的计算公式如下:
主时钟频率=模块时钟频率 X [(ICCL+d)+(ICCH+d)]
为了与所有I2C协议时钟频率匹配,模块时钟必须配置在7~12MHz之间,分频器必须在I2C模块被复位时(即I2CMDR的IR=0)配置。当IRS由0变成1时所分频的频率才有效,当IRS=1时改变IPSC的值不起作用。
当I2C总线的I2C模块被配置成主器件时,在SCL引脚出现主时钟。该时钟控制I2C模块同其他从器件之间通信的时序。I2CCLKL的ICCL位和I2CCLKH的ICCH位的值分别表示分频值的低字节部分和高字节部分。
四.I2C模块操作
1.数据状态
下图描述了I2C总线传送数据时数据线SDA和时钟线SCL的电平状态。
在时钟为高电平时SDA引脚上的数据必须稳定。只有在SCL上时钟信号变低时,数据线SDA引脚的数据才可以改变。
2.操作模式
I2C模块有四种基本操作模式用以支持数据传送。
具体工作如下:
1)如果I2C模块工作在主模式下,当向从模块发送数据时,I2C模块必须保持主发送器模式;接收从模块的数据时,则其必须变为主接收器模式。
2)如果I2C模块是从机,通常是当其识别来自主机的从地址时发送一个应答信号。如果主机将要发送数据给I2C模块,那么模块必须保持从接收器模式。如果主机要求I2C模块发送数据,那么模块必须变成从发送器模式。
五.I2C模块的起始和停止条件
当I2C总线上的I2C模块被配置成主机时,可以由该模块产生起始(START)和停止(STOP)条件。如图所示,当SCL为高电平时,SDA数据线产生由高到低跳变时,表示起始条件开始。主机通过产生这样的条件来表明数据传送开始;当SCL为高电平,SDA数据线产生由低到高跳变时,表明停止条件产生。主机通过产生该条件表明数据传送停止结束。
起始条件开始后且停止条件产生之前,认为此时的I2C总线是处于忙状态的,此时I2CSTR的总线忙位BB=1;在停止条件产生后与下个起始条件产生前,这段期间认为I2C总线是处于空闲的,此时BB=0.。
为了使I2C模块使用起始条件开始数据传送,I2CMDR的主机模式位(MST)和起始条件位(STT)都必须为1.为了使I2C模块使用停止条件终止数据的传送,则停止条件位(STP)必须置1。当RM位和STT位都置1时,产生重复的起始条件。
六.串行数据格式
上图是传输8位数据。SDA数据线上每一位的维持时间相当于SCL一个脉冲。传输数据时,总是高有效位字节(MSB)开始传送。发送和接收数据的个数没有限制。
1)7位地址格式
要使用7位地址格式,需向I2CMDR的扩展地址使能位(XA)写0,并且要确保自由数据格式关闭(即I2CMDR的FDF=0)
起始位后第一个字节包括7位的从机地址和1位读写选择位。决定数据传送的方向,当=0,代表主机向所寻址的从机写数据;当=1,主机读来自从机的数据。
每个字节传输完成后,必须插入一个额外的时钟周期应答位(ACK)。如果在主机传送第一个字节后,从机产生应答位,则发送器就会发送n位数据。n是由I2CMDR的BC位来确定的1~8位数。当数据传送完成后,接收器产生一个应答位ACK。
2)10位地址格式
要使用10位地址格式,需向I2CMDR的扩展地址使能位(XA)写1,并且要确保自由数据格式关闭(即I2CMDR的FDF=0)
起始位后第一个字节包括11110和从机地址的2个最高位MSBs以及一个读写选择位,第二个字节为剩下的8位地址。主机一旦向从机发送了第二个字节,就可以写数据,或者通过重复使用开始位(START)来改变数据传送方向。
七.I2C协议总线信号时序分析
1.总线空闲状态
SDA和SCL两条信号线都处于高电平,即总线上器件都处于释放状态。
2.应答信号ACK
I2C总线的数据都是以8位进行传送,发送器每发送一个字节后,在SCL第9个时钟脉冲期间释放数据总线,由接收器发送一个ACK(把数据总线电平拉低)来表示数据成功接收。
3.无应答信号NACK
在SCL第9个时钟脉冲期间释放数据总线,接收器不拉低数据总线表示一个NACK,NACK有两种用途:
a.表示接收器未成功接收数据字节;
b.当接收器是主控器时,它收到最后一个字节后,应发送一个NACK信号,以通知被控发送器结束数据发送,并释放总线,以便主控接收器发送一个停止信号STOP。
八.写通讯过程(便于加深理解)
九.读通讯过程
十.I2C协议寻址约定
地址的分配方法有两种:
1.含CPU的智能器件,地址由软件初始化时定义,但不能与其它器件有冲突;
2.不含CPU的非智能硬件,由厂家在器件内固化,不可改变。
高7位为地址码,其分为两部分:
1.高4位属于固定地址不可改变,由厂家固化的统一地址;
2.第三位为引脚设定地址,可以由外部引脚来设定(并非所有器件都可以设定,也并非所有器件都是引脚设定)。
*****************************************************************************************************************这部分内容比较多,全是理论为主,以上只是讲了一些经常用到的知识点,还有一些没有在此写出来,如果有需要可以查阅开发板产品中关于【I2C模块部分手册】。
好啦,这部分暂时没有软件实验部分,这一讲结束。