Java 集合体系之 ArrayList 源码分析

前言

ArrayList 的底层我们都知道,是通过数组来实现的,那么其内部又是如何做到可动态扩展的呢?下面就来扒开源码一探究竟。

源码分析

直接上代码,注释写的很清晰了已经:

public class ArrayList extends AbstractList
        implements List, RandomAccess, Cloneable, java.io.Serializable
{
    private static final long serialVersionUID = 8683452581122892189L;

    /**
     * 默认的初始容量
     */
    private static final int DEFAULT_CAPACITY = 10;

    /**
     * Object 类型的空数组实例
     */
    private static final Object[] EMPTY_ELEMENTDATA = {};

    /**
     * Object 类型的默认大小(10)的空数组实例
     */
    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

    /**
     * 存储 ArrayList 元素的数组缓冲区
     */
    transient Object[] elementData; // non-private to simplify nested class access
    // transient: 被修饰的变量不加入序列化
    /**
     * ArrayList 的大小(包含的元素数)
     */
    private int size;

    /**
     * 构建一个具有初始容量的空集合
     */
    public ArrayList(int initialCapacity) {
        // 如果初始容量大于 0,则创建一个新的初始容量的数组
        if (initialCapacity > 0) {
            this.elementData = new Object[initialCapacity];
        } else if (initialCapacity == 0) {// 如果初始容量等于 0,则直接使用已经定义好的空数组实例
            this.elementData = EMPTY_ELEMENTDATA;
        } else {// 如果小于 0,则直接抛出异常
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        }
    }

    /**
     * 构建一个初始容量为 10 的空集合
     */
    public ArrayList() {
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    }

    /**
     * 构建一个包含指定集合元素的集合(按照集合的迭代器返回的顺序)
     */
    public ArrayList(Collection c) {
        // 将集合转为数组
        elementData = c.toArray();
        // 如果传递过来的集合有数据
        if ((size = elementData.length) != 0) {
            // c.toArray 返回的结果有可能并不是 Object[] 类型的 (官方 bug)
            // 详见官方 bug 地址:http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6260652
            if (elementData.getClass() != Object[].class)
                // 指定 Object[] 类型,重新 copy 数组
                elementData = Arrays.copyOf(elementData, size, Object[].class);
        } else {
            // 没有数据,则直接使用原先定义好的空数组
            this.elementData = EMPTY_ELEMENTDATA;
        }
    }

    /**
     * 修改 ArrayList 实际的容量为 size
     * 由于 elementData 的容量是可以被扩展的,而 size 是包含元素的个数
     * 所以会出现 size 比 elementData.length 小的情况出现,浪费了空间
     * 该方法的作用就是重新返回一个和元素个数相等长度的数组给 elementData
     */
    public void trimToSize() {
        modCount++;// 集合已被修改的次数 +1
        if (size < elementData.length) {
            elementData = (size == 0)
              ? EMPTY_ELEMENTDATA
              : Arrays.copyOf(elementData, size);
        }
    }

    /**
     * 对 ArrayList 的容量进行扩容
     * 如果构造的是一个具有初始容量的集合(无参构造)
     * 那么传递的参数(minCapacity)必须大于默认初始容量(10)
     */
    public void ensureCapacity(int minCapacity) {
        // 判断了构造的是否是具有初始容量的数组
        int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
            ? 0
            : DEFAULT_CAPACITY;
        if (minCapacity > minExpand) {
            // 确保明确的容量
            ensureExplicitCapacity(minCapacity);
        }
    }

    private void ensureCapacityInternal(int minCapacity) {
        // 如果数组是有默认容量的数组
        if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
            // 那么最小容量则是默认容量和最小容量中最大的一个
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
        }
        // 扩容
        ensureExplicitCapacity(minCapacity);
    }

    private void ensureExplicitCapacity(int minCapacity) {
        modCount++;// 集合被修改次数 +1

        // 确保最小容量大于数组的容量
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

    /**
     * 要分配数组的最大大小
     * 当尝试分配更大的数组容量时,会导致 OutOfMemoryError
     * -8 是因为数组自己需要 8byte 来存储元数据
     */
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    /**
     * 增加容量以保证它至少容纳最小容量参数指定元素的数量
     *
     * @param minCapacity 所需的最小容量
     */
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + (oldCapacity >> 1);// 新容量:原有容量 + 原有容量的一半
        if (newCapacity - minCapacity < 0)// 如果新容量小于了最小容量,那么新容量则为最小容量
            newCapacity = minCapacity;
        if (newCapacity - MAX_ARRAY_SIZE > 0)// 如果新容量超出了最大的数组容量
            newCapacity = hugeCapacity(minCapacity);// 新容量等于最大的数组容量
        // minCapacity is usually close to size, so this is a win:
        elementData = Arrays.copyOf(elementData, newCapacity);// 创建新容量的数组(原数据不变,只是容量变大)
    }

    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // 当最小容量小于 0,直接抛出 OutOfMemoryError 异常
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?// 最小容量是否大于最大数组容量
            Integer.MAX_VALUE :// 是则返回 Integer.MAX_VALUE 
            MAX_ARRAY_SIZE;// 否则返回最大数组容量
    }

    /**
     * 返回 ArrayList 中存储元素的数量(注意,该 size 并不等于 length)
     */
    public int size() {
        return size;
    }

    /**
     * 返回 ArrayList 中存储的元素是否是空的
     */
    public boolean isEmpty() {
        return size == 0;
    }

    /**
     * 如果 ArrayList 中包含了指定的元素,则返回 true,否则返回 false( null 元素也算)
     */
    public boolean contains(Object o) {
        return indexOf(o) >= 0;
    }

    /**
     * 返回指定元素(null 也算)在集合(数组)中第一次出现的位置(角标)
     * 如果没有找到则会返回 -1
     */
    public int indexOf(Object o) {
        // 遍历数组进行比较,比较到就直接返回对应位置角标
        if (o == null) {
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    /**
     * 同 indexOf(),只不过是反向遍历,所以返回的是指定元素最后一次出现的位置
     */
    public int lastIndexOf(Object o) {
        if (o == null) {
            for (int i = size-1; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = size-1; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    /**
     * 返回 ArrayList 实例的浅拷贝(元素本身不被复制)
     * 浅拷贝:两个变量指示内存中的地址不一样,但是变量中的元素指向的是同一个
     * 深拷贝:两个变量指示内存中的地址不一样,变量中元素也不是同一个
     */
    public Object clone() {
        try {
            ArrayList v = (ArrayList) super.clone();
            v.elementData = Arrays.copyOf(elementData, size);
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
    }

    /**
     * 该方法作为 ArrayList 和数组之间的桥梁
     * 以正确的顺序返回一个包含 ArrayList 中所有元素的数组(从第一个到最后一个)
     *
     * 返回的数组是“安全”的,因为 ArrayList 不保留对它的引用(换句话说,该方法必须分配一个新的数组)
     * 因此,调用者可以自由的修改返回的数组
     */
    public Object[] toArray() {
        return Arrays.copyOf(elementData, size);
    }

    /**
     * 返回指定数组类型的数组(参数指定了一个具体类型的数组)
     * 如果 ArrayList 中的元素数和指定的数组的长度相同
     * 那么就会直接将元素 copy 到指定数组中,并返回该数组
     * 
     * 如果指定数组的长度小于了 ArrayList 中的元素
     * 那么就会按照指定数组的运行时类型和 ArrayList 大小重新分配一个数组。
     * 
     * 如果指定数组的长度大于了 ArrayList 中的元素
     * 那么就会将数组中结束位置的元素设置为 null
     *(当 ArrayList 中不包含任何空元素时,这有助于调用者确定 ArrayList 的长度)
     */
    @SuppressWarnings("unchecked")
    public  T[] toArray(T[] a) {
        if (a.length < size)
            // Make a new array of a's runtime type, but my contents:
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
        System.arraycopy(elementData, 0, a, 0, size);
        if (a.length > size)
            a[size] = null;
        return a;
    }

    // 对数组进行位置访问操作,这里拿方法重新包装了一层

    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }

    /**
     * 返回 ArrayList 中指定位置的元素
     * 如果指定的 index 位置超过了实际存储的元素数
     * 那么则会抛出 IndexOutOfBoundsException 异常
     */
    public E get(int index) {
        rangeCheck(index);// 校验了传递的角标是否大于了实际存储的元素数

        return elementData(index);
    }

    /**
     * 用指定的新元素替换指定位置上的旧元素,并返回旧元素
     * 如果传递的指定位置超过了元素数则会抛出角标越界异常
     */
    public E set(int index, E element) {
        rangeCheck(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }

    /**
     * 将指定的元素添加到 ArrayList 末尾
     */
    public boolean add(E e) {
        // 如果数组容量不够,则进行扩容
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;// 赋值
        return true;
    }

    /**
     * 在 ArrayList 指定的位置插入指定的元素
     * 将当前位于该位置的元素(如果有)和随后的任何元素移动到右侧
     * 位移是通过 System.arraycopy() 方法来实现的
     * 将原数组的指定位置到后面的元素复制到从指定元素 + 1 到元素长度位置
     * 以此成功实现位移
     */

    public void add(int index, E element) {
        rangeCheckForAdd(index);// 校验是否越界

        ensureCapacityInternal(size + 1);  // Increments modCount!!
        System.arraycopy(elementData, index, elementData, index + 1,
                         size - index);
        elementData[index] = element;
        size++;
    }

    /**
     * 删除 ArrayList 中指定位置的元素
     * 移除后会将任何后续元素移动到左侧
     */
    public E remove(int index) {
        rangeCheck(index);

        modCount++;
        E oldValue = elementData(index);

        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // 让 GC 工作起来

        return oldValue;
    }

    /**
     * 从 ArrayList 中删除第一个出现的指定元素,删除成功返回 true,否则返回 false
     */
    public boolean remove(Object o) {
        if (o == null) {
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) {
                    fastRemove(index);
                    return true;
                }
        } else {
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) {
                    fastRemove(index);
                    return true;
                }
        }
        return false;
    }

    /*
     * 专用删除方法,不校验角标越界,并且不返回删除的值
     */
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work
    }

    /**
     * 从 ArrayList 中删除所有元素
     */
    public void clear() {
        modCount++;

        // clear to let GC do its work
        for (int i = 0; i < size; i++)// 遍历数组中有元素的部分,然后将元素置为 null,明确让 GC 回收
            elementData[i] = null;

        size = 0;
    }

    /**
     * 按照指定集合迭代器返回的顺序,追加指定集合内所有的元素到 ArrayList 的末尾
     * 追加成功返回 treu,否则返回 false。如果指定集合在操作进行中被修改,则此操作的行为是为定义的
     * (这意味着如果指定的集合是当前的 ArrayList,并且此列表非空,则此调用的行为是未定义的)
     */
    public boolean addAll(Collection c) {
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // 根据指定集合的大小进行数组扩容
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        return numNew != 0;
    }

    /**
     * 从指定位置开始,将指定集合中的所有元素插入到此 ArrayList
     */
    public boolean addAll(int index, Collection c) {
        rangeCheckForAdd(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount

        int numMoved = size - index;
        if (numMoved > 0)// 先将原有元素往后进行移动
            System.arraycopy(elementData, index, elementData, index + numNew,
                             numMoved);
        // 然后再将指定集合的元素复制到当前数组
        System.arraycopy(a, 0, elementData, index, numNew);
        size += numNew;
        return numNew != 0;
    }

    /**
     * 删除 fromIndex 和 toIndex 之间所有的元素(包括 toIndex)
     * 移除后,会将后面的元素移到左边,如果 fromIndex 和 toIndex 相等,则不会有效果
     */
    protected void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = size - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);

        // clear to let GC do its work
        int newSize = size - (toIndex-fromIndex);
        for (int i = newSize; i < size; i++) {
            elementData[i] = null;
        }
        size = newSize;
    }

    /**
     * 校验给定的索引是否在范围内,如果不在则抛出 IndexOutOfBoundException 异常
     * 该方法并不校验索引是否是负数,它始终是在访问数组之前调用,如果索引为负数则抛出 
     * ArrayIndexOutOfBoundsException 异常
     */
    private void rangeCheck(int index) {
        if (index >= size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * 由 add 和 addAll 使用的 rangeCheck 版本
     */
    private void rangeCheckForAdd(int index) {
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * 构造 IndexOutOfBoundsException 异常的详细错误信息
     */
    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }

    /**
     * 从此 ArrayList 中删除指定集合中的所有元素
     */
    public boolean removeAll(Collection c) {
        Objects.requireNonNull(c);// 校验指定集合是否为 null
        return batchRemove(c, false);
    }

    /**
     * 仅保留此 ArrayList 中包含指定集合中的元素
     * 换句话说,从此 ArrayList 中删除不包含在指定集合中的所有元素
     */
    public boolean retainAll(Collection c) {
        Objects.requireNonNull(c);
        return batchRemove(c, true);
    }

    private boolean batchRemove(Collection c, boolean complement) {
        final Object[] elementData = this.elementData;
        int r = 0, w = 0;
        boolean modified = false;
        try {
            for (; r < size; r++)
                if (c.contains(elementData[r]) == complement)
                    elementData[w++] = elementData[r];
        } finally {
            // Preserve behavioral compatibility with AbstractCollection,
            // even if c.contains() throws.
            if (r != size) {
                System.arraycopy(elementData, r,
                                 elementData, w,
                                 size - r);
                w += size - r;
            }
            if (w != size) {
                // clear to let GC do its work
                for (int i = w; i < size; i++)
                    elementData[i] = null;
                modCount += size - w;
                size = w;
                modified = true;
            }
        }
        return modified;
    }

    /**
     * 将 ArrayList 实例的状态保存到流中(即序列化它)
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException{
        // Write out element count, and any hidden stuff
        int expectedModCount = modCount;
        s.defaultWriteObject();

        // Write out size as capacity for behavioural compatibility with clone()
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (int i=0; i

The {@code Spliterator} reports {@link Spliterator#SIZED}, * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}. * Overriding implementations should document the reporting of additional * characteristic values. * * @return a {@code Spliterator} over the elements in this list * @since 1.8 */ @Override public Spliterator spliterator() { return new ArrayListSpliterator<>(this, 0, -1, 0); } /** Index-based split-by-two, lazily initialized Spliterator */ static final class ArrayListSpliterator implements Spliterator { /* * If ArrayLists were immutable, or structurally immutable (no * adds, removes, etc), we could implement their spliterators * with Arrays.spliterator. Instead we detect as much * interference during traversal as practical without * sacrificing much performance. We rely primarily on * modCounts. These are not guaranteed to detect concurrency * violations, and are sometimes overly conservative about * within-thread interference, but detect enough problems to * be worthwhile in practice. To carry this out, we (1) lazily * initialize fence and expectedModCount until the latest * point that we need to commit to the state we are checking * against; thus improving precision. (This doesn't apply to * SubLists, that create spliterators with current non-lazy * values). (2) We perform only a single * ConcurrentModificationException check at the end of forEach * (the most performance-sensitive method). When using forEach * (as opposed to iterators), we can normally only detect * interference after actions, not before. Further * CME-triggering checks apply to all other possible * violations of assumptions for example null or too-small * elementData array given its size(), that could only have * occurred due to interference. This allows the inner loop * of forEach to run without any further checks, and * simplifies lambda-resolution. While this does entail a * number of checks, note that in the common case of * list.stream().forEach(a), no checks or other computation * occur anywhere other than inside forEach itself. The other * less-often-used methods cannot take advantage of most of * these streamlinings. */ private final ArrayList list; private int index; // current index, modified on advance/split private int fence; // -1 until used; then one past last index private int expectedModCount; // initialized when fence set /** Create new spliterator covering the given range */ ArrayListSpliterator(ArrayList list, int origin, int fence, int expectedModCount) { this.list = list; // OK if null unless traversed this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; } private int getFence() { // initialize fence to size on first use int hi; // (a specialized variant appears in method forEach) ArrayList lst; if ((hi = fence) < 0) { if ((lst = list) == null) hi = fence = 0; else { expectedModCount = lst.modCount; hi = fence = lst.size; } } return hi; } public ArrayListSpliterator trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid) ? null : // divide range in half unless too small new ArrayListSpliterator(list, lo, index = mid, expectedModCount); } public boolean tryAdvance(Consumer action) { if (action == null) throw new NullPointerException(); int hi = getFence(), i = index; if (i < hi) { index = i + 1; @SuppressWarnings("unchecked") E e = (E)list.elementData[i]; action.accept(e); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } public void forEachRemaining(Consumer action) { int i, hi, mc; // hoist accesses and checks from loop ArrayList lst; Object[] a; if (action == null) throw new NullPointerException(); if ((lst = list) != null && (a = lst.elementData) != null) { if ((hi = fence) < 0) { mc = lst.modCount; hi = lst.size; } else mc = expectedModCount; if ((i = index) >= 0 && (index = hi) <= a.length) { for (; i < hi; ++i) { @SuppressWarnings("unchecked") E e = (E) a[i]; action.accept(e); } if (lst.modCount == mc) return; } } throw new ConcurrentModificationException(); } public long estimateSize() { return (long) (getFence() - index); } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } @Override public boolean removeIf(Predicate filter) { Objects.requireNonNull(filter); // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { @SuppressWarnings("unchecked") final E element = (E) elementData[i]; if (filter.test(element)) { removeSet.set(i); removeCount++; } } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } // shift surviving elements left over the spaces left by removed elements final boolean anyToRemove = removeCount > 0; if (anyToRemove) { final int newSize = size - removeCount; for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) { i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; } for (int k=newSize; k < size; k++) { elementData[k] = null; // Let gc do its work } this.size = newSize; if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } return anyToRemove; } @Override @SuppressWarnings("unchecked") public void replaceAll(UnaryOperator operator) { Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { elementData[i] = operator.apply((E) elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } @Override @SuppressWarnings("unchecked") public void sort(Comparator c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } }

总结

通过源码可以看到 ArrayList 内部其实是维护了两个数组的,一个是空数组,一个是带默认容量的数组,其默认容量为 10。 在进行集合操作的时候会进行判断,如果当数组满了,装不下新元素,那么就会进行扩容。扩容是根据原有的容量大小 + 原油容量大小的一半,比如原有的容量为 10,那么扩容后的容量就是:10 + (10 / 2) = 15 了。

另外我们还知道了,ArrayList 也是有最终容量的,其定义的是 Integer.MAX_VALUE - 8,这里减去的是数组自身需要存储元数据的空间大小。

好了,ArrayList 的分析就到这里了,下一篇再来分析分析其他的集合实现类。

你可能感兴趣的:(Java,源码分析)