复变函数与积分变换系列(二) - 复变函数的求导

复变函数的求导

Author : Benjamin142857

[TOC]

1. 复变函数求导

1.1 函数在某点可导(可微)的充要条件

  1. u u u 在该点连续
  2. v v v 在该点连续
  3. 满足Cauchy - Reimann方程
  • KaTeX parse error: Expected '}', got '\part' at position 7: \frac{\̲p̲a̲r̲t̲ ̲u}{\part x} = \…
  • KaTeX parse error: Expected '}', got '\part' at position 7: \frac{\̲p̲a̲r̲t̲ ̲u}{\part y} = -…

(1.1) f ( z ) = u + i v f(z) = u+iv\tag{1.1} f(z)=u+iv(1.1)

1.2 函数在某区域内可导(可微)的充要条件

在该区域内的点均可导(可微)

1.3 题 - 证 f ( z ) f(z) f(z) 可导性

  • f ( z ) = u + i v f(z) = u+iv f(z)=u+iv 形式

    u 、 v u、v uv 的连续性 : 若为初等函数(基本初等函数及其四则运算组合),在定义域内处处连续

    满足CR方程 : 算出满足满足CR方程时的 x , y x, y x,y 关系,若CR方程恒成立,则复平面上处处可导

  • f ( z ) = z 2 + 2 z + 1 f(z) = z^2+2z+1 f(z)=z2+2z+1 等直接带 z z z 形式

    若为初等解析函数(基本初等解析函数及其四则运算组合),在定义域内处处连续

1.4 题 - 对 f ( z ) f(z) f(z) 求导问题【#】

  • f ( z ) = u + i v f(z) = u+iv f(z)=u+iv 形式

    待补

  • f ( z ) = z 2 + 2 z + 1 f(z) = z^2+2z+1 f(z)=z2+2z+1 等直接带 z z z 形式

    直接求导,如同实函数 f ( x ) f(x) f(x)

2. 解析函数

2.1 函数在某点解析的充要条件

  • 函数在该点可导
  • 函数在该点的某领域内可导

2.2 函数在某区域解析的充要条件

  • 函数在该区域可导

2.3 奇点与孤立奇点

  • 奇点:不解析的点
  • 孤立奇点:领域内唯一奇点

3. 初等解析函数【#】

五个基本初等解析函数 : 幂指对三角(反)

  • 复指数函数
  • 复对数函数
  • 复幂函数
  • 复三角函数&双曲函数
  • 复反三角函数

你可能感兴趣的:(数学类课群)