Author : Benjamin142857
Date : 2018/10/1
[TOC]
Cauchy Riemann equation - 柯西黎曼方程,对于 f ( z ) = u + i v f(z) = u + iv f(z)=u+iv
KaTeX parse error: Expected '}', got '\part' at position 8: \frac{\̲p̲a̲r̲t̲ ̲u}{\part x} = \…
Cauchy Goursat theorem - 柯西古萨定理,对于 f ( z ) f(z) f(z) 在D内解析
∮ c f ( z ) d z = 0 \oint_cf(z)dz=0 ∮cf(z)dz=0
c : ∣ z − z 0 ∣ = r c : |z-z_0|=r c:∣z−z0∣=r
∮ c d z ( z − z 0 ) n + 1 = { 2 π i , ( n = 0 ) 0 , ( n ≠ 0 ) \oint_{c}\frac{dz}{(z-z_0)^{n+1}} = \begin{cases} 2\pi i,(n=0) \\ 0,(n\neq0)\end{cases} ∮c(z−z0)n+1dz={2πi,(n=0)0,(n̸=0)
c c c 含 n n n 个奇点,每个奇点可以画个 c k c_k ck 小圆, k = 1 , 2 , . . . , n k=1,2,...,n k=1,2,...,n
∮ c f ( z ) d z = ∑ k = 1 n ∮ c k f ( z ) d z \oint_cf(z)dz = \sum_{k=1}^n\oint_{c_k}f(z)dz ∮cf(z)dz=k=1∑n∮ckf(z)dz
f ( z ) f(z) f(z) 在 z 0 z_0 z0 连续
∮ c f ( z ) z − z 0 d z = 2 π i f ( z 0 ) \oint_c\frac{f(z)}{z-z_0}dz = 2\pi if(z_0) ∮cz−z0f(z)dz=2πif(z0)
f ( n ) ( z 0 ) = n ! 2 π i ∮ f ( z ) ( z − z 0 ) n + 1 d z f^{(n)}(z_0) = \frac{n!}{2\pi i}\oint\frac{f(z)}{(z-z_0)^{n+1}}dz f(n)(z0)=2πin!∮(z−z0)n+1f(z)dz
拉普拉斯方程,对于函数 ϕ ( x , y ) \phi(x, y) ϕ(x,y)
KaTeX parse error: Expected '}', got '\part' at position 8: \frac{\̲p̲a̲r̲t̲^2\phi}{\part x…
一般题目所给出的积分路径 c c c 在 f ( z ) f(z) f(z) 的解析区域内或 f ( z ) f(z) f(z) 全平面解析,根据 C-G定理,积分与路径无关,转为x,y重积分
例 :求 ∫ c z ‾ d z , c : y = x 3 ( x ∈ [ 0 → 2 ] ) \int_{c}\overline z dz,\ \ \ c : y=x^3(x\in [0\rightarrow 2]) ∫czdz, c:y=x3(x∈[0→2])
∫ c z ‾ d z = ∫ ( 0 , 0 ) ( 2 , 0 ) x − i y d z + ∫ ( 2 , 0 ) ( 2 , 8 ) x − i y d z = ∫ 0 2 x d x + ∫ 0 8 ( 2 − i y ) i d y = 34 + 8 i \int_c \overline z dz \\= \int_{(0, 0)}^{(2,0)}x-iydz + \int_{(2, 0)}^{(2,8)}x-iydz \\= \int_0^2xdx + \int_0^8(2-iy)idy\\=34+8i ∫czdz=∫(0,0)(2,0)x−iydz+∫(2,0)(2,8)x−iydz=∫02xdx+∫08(2−iy)idy=34+8i
路径未必在解析区域内的万能做法,但计算复杂
例 :求 ∫ c z ‾ d z , c : y = x 3 ( u ( t ) − u ( t + 2 ) ) \int_{c}\overline z dz,\ \ \ c : y=x^3(u(t)-u(t+2)) ∫czdz, c:y=x3(u(t)−u(t+2))
x = t x = t x=t, y = t 3 y = t^3 y=t3, t ∈ ( 0 , 2 ) t\in (0,2) t∈(0,2)
z = t + i t 3 z = t+it^3 z=t+it3
f ( z ) = t − i t 3 f(z) = t-it^3 f(z)=t−it3
∫ c z ‾ d z = ∫ 0 2 t − i t 3 d ( t + i t 3 ) = ∫ 0 2 t + 3 t 5 + i 2 t 3 d t = 34 + 8 i \int_c \overline z dz = \int_0^2t-it^3d(t+it^3) = \int_0^2t+3t^5+i2t^3dt=34+8i ∫czdz=∫02t−it3d(t+it3)=∫02t+3t5+i2t3dt=34+8i
若在解析区域, C-G定理
∮ C f ( z ) d z = 0 \oint_C f(z)dz = 0 ∮Cf(z)dz=0
[圈圈公式]
例 :求 ∮ c 1 ( z − 1 ) d z , c : ∣ z ∣ = 2 \oint_{c}\frac{1}{(z-1)} dz,\ \ \ c : |z|=2 ∮c(z−1)1dz, c:∣z∣=2
∮ c 1 ( z − 1 ) d z = 2 π i \oint_{c}\frac{1}{(z-1)} dz = 2\pi i ∮c(z−1)1dz=2πi
[复合闭路定理 + 圈圈公式 + Cauchy积分公式]
例 :求 ∮ c 1 ( z − 1 ) ( z + 1 ) d z , c : ∣ z ∣ = 2 \oint_{c}\frac{1}{(z-1)(z+1)} dz,\ \ \ c : |z|=2 ∮c(z−1)(z+1)1dz, c:∣z∣=2
∮ c 1 ( z − 1 ) ( z + 1 ) d z = ∮ c 1 z z + 1 ( z − 1 ) d z + ∮ c 2 z z − 1 ( z + 1 ) d z = ∮ c 1 1 1 + 1 ( z − 1 ) d z + ∮ c 2 1 − 1 − 1 ( z + 1 ) d z = 0 \oint_{c}\frac{1}{(z-1)(z+1)} dz\\=\oint_{c1}\frac{\frac{z}{z+1}}{(z-1)}dz + \oint_{c2}\frac{\frac{z}{z-1}}{(z+1)}dz \\= \oint_{c1}\frac{\frac{1}{1+1}}{(z-1)}dz + \oint_{c2}\frac{\frac{1}{-1-1}}{(z+1)}dz \\= 0 ∮c(z−1)(z+1)1dz=∮c1(z−1)z+1zdz+∮c2(z+1)z−1zdz=∮c1(z−1)1+11dz+∮c2(z+1)−1−11dz=0
[ 圈圈公式 + Cauchy积分公式 ]
例 :求 ∮ c z ( z − 1 ) d z , c : ∣ z ∣ = 2 \oint_{c}\frac{z}{(z-1)} dz,\ \ \ c : |z|=2 ∮c(z−1)zdz, c:∣z∣=2
∮ c z ( z − 1 ) d z = ∮ c 1 ( z − 1 ) d z = 2 π i \oint_{c}\frac{z}{(z-1)} dz \\= \oint_{c}\frac{1}{(z-1)}dz \\= 2\pi i ∮c(z−1)zdz=∮c(z−1)1dz=2πi
[复合闭路定理 + 圈圈公式 + Cauchy积分公式]
例 :求 ∮ c z ( z − 1 ) ( z + 1 ) d z , c : ∣ z ∣ = 2 \oint_{c}\frac{z}{(z-1)(z+1)} dz,\ \ \ c : |z|=2 ∮c(z−1)(z+1)zdz, c:∣z∣=2
∮ c z ( z − 1 ) ( z + 1 ) d z = ∮ c 1 z z + 1 ( z − 1 ) d z + ∮ c 2 z z − 1 ( z + 1 ) d z = ∮ c 1 1 1 + 1 ( z − 1 ) d z + ∮ c 2 − 1 − 1 − 1 ( z + 1 ) d z = 2 π i \oint_{c}\frac{z}{(z-1)(z+1)} dz \\= \oint_{c1}\frac{\frac{z}{z+1}}{(z-1)}dz + \oint_{c2}\frac{\frac{z}{z-1}}{(z+1)}dz \\= \oint_{c1}\frac{\frac{1}{1+1}}{(z-1)}dz + \oint_{c2}\frac{\frac{-1}{-1-1}}{(z+1)}dz \\= 2\pi i ∮c(z−1)(z+1)zdz=∮c1(z−1)z+1zdz+∮c2(z+1)z−1zdz=∮c1(z−1)1+11dz+∮c2(z+1)−1−1−1dz=2πi
[高阶导数公式 + 圈圈公式 + Cauchy积分公式]
例 :求 ∮ c z ( z − 1 ) 5 d z , c : ∣ z ∣ = 2 \oint_{c}\frac{z}{(z-1)^5} dz,\ \ \ c : |z|=2 ∮c(z−1)5zdz, c:∣z∣=2
∮ c z ( z − 1 ) 5 d z = 2 π i 4 ! [ z ( 4 ) ∣ z = 1 ] = 0 \oint_{c}\frac{z}{(z-1)^5} dz \\= \frac{2\pi i}{4!}[z^{(4)}|_{z=1}]\\=0 ∮c(z−1)5zdz=4!2πi[z(4)∣z=1]=0
[高阶导数公式 + 圈圈公式 + 复合闭路定理 + Cauchy积分公式]
例 :求 ∮ c z ( z − 1 ) 2 ( z − 2 ) 3 d z , c : ∣ z ∣ = 3 \oint_{c}\frac{z}{(z-1)^2(z-2)^3} dz,\ \ \ c : |z|=3 ∮c(z−1)2(z−2)3zdz, c:∣z∣=3
∮ c z ( z − 1 ) 2 ( z − 2 ) 3 d z = ∮ c 1 z ( z − 2 ) 3 ( z − 1 ) 2 d z + ∮ c 2 z ( z − 1 ) 2 ( z − 2 ) 3 d z = 2 π i 1 ! [ ( z ( z − 2 ) 3 ) ( 1 ) ∣ z = 2 ] + 2 π i 2 ! [ ( z ( z − 1 ) 2 ) ( 2 ) ∣ z = 1 ] = 不 想 算 \oint_{c}\frac{z}{(z-1)^2(z-2)^3} dz \\=\oint_{c1}\frac{\frac{z}{(z-2)^3}}{(z-1)^2}dz + \oint_{c2}\frac{\frac{z}{(z-1)^2}}{(z-2)^3}dz\\=\frac{2\pi i}{1!}[(\frac{z}{(z-2)^3})^{(1)}|_{z=2}] + \frac{2\pi i}{2!}[(\frac{z}{(z-1)^2})^{(2)}|_{z=1}]\\=不想算 ∮c(z−1)2(z−2)3zdz=∮c1(z−1)2(z−2)3zdz+∮c2(z−2)3(z−1)2zdz=1!2πi[((z−2)3z)(1)∣z=2]+2!2πi[((z−1)2z)(2)∣z=1]=不想算
调和函数 ϕ ( x , y ) \phi(x, y) ϕ(x,y)
[C-R方程] ⇓ \Downarrow ⇓
区域内的解析函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z) = u(x, y) + iv(x, y) f(z)=u(x,y)+iv(x,y) 实部与虚部均为调和函数
区域内的解析函数的虚部为实部的共轭调和函数
偏微分法
通过 u u u ⇒ \Rightarrow ⇒ v v v ⇒ \Rightarrow ⇒ u + i v u+iv u+iv 或 通过 v v v ⇒ \Rightarrow ⇒ u u u ⇒ \Rightarrow ⇒ u + i v u + iv u+iv