Codeforces Round #540 (Div. 3) C. Palindromic Matrix

这题真的快搞死我了

首先一遍读入一遍桶排序

要是偶数的情况的话,则右上角1/4那块应该与左上角1/4那块对称,然后上半部分和下半部分对称

所以,每个数的数量都要是4的倍数,判断可行性

然后填充,填充只用填充右上角1/4,对称得到左上角1/4,再对称得到下半部分

现在考虑奇数的情况

设mid = n / 2 + 1,要是忽略mid行和mid列,则剩下的区域和偶数部分是一样的处理

但是现在要注意!

mid列只需以中心为mid,mid的那个点对称,mid行也是,而mid行和mid列没有关系!!!

此处提供一组数据:

7
5 9 5 4 1 9 8 4 5 1 4 10 7 7 8 4 2 4 4 5 4 4 10 3 4 6 8 1 9 9 5 6 8 7 1 8 6 6 7 5 3 1 1 4 7 2 3 3 8

那么奇数的情况就是先填充除了mid行和mid列的,然后判断这些填充区域是否存在0,若存在则不可行

然后判断剩下的桶是否 非2的倍数的数只有1个,否则,不可行

然后填充mid行和mid列就ok

我代码的话奇数部分和偶数部分其实有很多相同之处(事实上我是复制再修改的),所以如果参考的话可以先看偶数部分再看奇数部分

#include

using namespace std;
int tong[1010];
int mp[30][30];
int main()
{
	int n;
	scanf("%d", &n);
	for(int i = 1; i <= n * n; i ++)
	{
		int temp;
		scanf("%d", &temp);
		tong[temp] ++;
	}
	if(n % 2 == 0)
	{
		int flag = 1;
		for(int i = 1; i <= 1000; i ++)
		{
			if(tong[i] % 4 != 0)
			{
				flag = 0;
				break;
			}
		}
		if(!flag)
		{
			printf("NO\n");
			return 0;
		}
		int mid = n / 2;
		int now = 1;
		for(int i = 1; i <= 1000; i ++)
		{
			while(tong[i])
			{
				int x = (now - 1) / mid + 1, y = now - (x - 1) * mid;
				mp[x][y] = i;
				//cout << x << " " << y << " " <<  i << endl;
				tong[i] -= 4;
				now ++;
			}
		}
		for(int i = 1; i <= mid; i ++)
		{
			for(int j = 1; j <= mid; j ++)
			{
				mp[i][n + 1 - j] = mp[i][j];
			}
		}
		for(int i = 1; i <= mid; i ++)
		{
			for(int j = 1; j <= n; j ++)
			{
				mp[n + 1 - i][j] = mp[i][j];
			}
		}
	}
	else
	{
		int mid = n / 2;
		int now = 1;
		for(int i = 1; i <= 1000; i ++)
		{
			while(tong[i] >= 4)
			{
				int x = (now - 1) / mid + 1, y = now - (x - 1) * mid;
				mp[x][y] = i;
				//cout << x << " " << y << " " <<  i << endl;
				tong[i] -= 4;
				now ++;
				if(now > mid * mid)
					break;
			}
			if(now > mid * mid)
				break;
		}
		int flag = 1, num = 0;
		for(int i = 1; i <= 1000; i ++)
		{
			if(tong[i] % 2 != 0)
			{
				if(tong[i] % 2 == 1 && num  == 0)
					num = 1;
				else
				{
					flag = 0;
					break;
				}
			}
		}
		for(int i = 1; i <= mid; i ++)
			for(int j = 1; j <= mid; j ++)
				if(mp[i][j] == 0)
				{
					flag = 0;
					break;
				}
		if(!flag)
		{
			printf("NO\n");
			return 0;
		}
		now = 1;
		for(int i = 1; i <= 1000; i ++)
		{
			while(tong[i] >= 2)
			{
				mp[now][mid + 1] = i;
				tong[i] -= 2;
				now ++;
				if(now > mid)
					break;
			}
			if(now > mid)
				break;
		}
		now = 1;
		for(int i = 1; i <= 1000; i ++)
		{
			while(tong[i] >= 2)
			{
				mp[mid + 1][now] = i;
				tong[i] -= 2;
				now ++;
				if(now > mid)
					break;
			}
			if(now > mid)
				break;
		}
		for(int i = 1; i <= mid; i ++)
		{
			mp[mid + 1][n - i + 1] = mp[mid + 1][i];
		}
		for(int i = 1; i <= 1000; i ++)
		{
			if(tong[i])
			{
				mp[mid + 1][mid + 1] = i;
				break;
			}
		}
		for(int i = 1; i <= mid; i ++)
		{
			for(int j = 1; j <= mid; j ++)
			{
				mp[i][n + 1 - j] = mp[i][j];
			}
		}
		for(int i = 1; i <= mid; i ++)
		{
			for(int j = 1; j <= n; j ++)
			{
				mp[n + 1 - i][j] = mp[i][j];
			}
		}
	}
	printf("YES\n");
	for(int i = 1; i <= n; i ++)
	{
		for(int j = 1; j <= n; j ++)
			printf("%d ", mp[i][j]);
		printf("\n");
	}

	return 0;
}

 

你可能感兴趣的:(Codeforces Round #540 (Div. 3) C. Palindromic Matrix)