扩展KMP算法

原文链接: https://subetter.com/algorith...

前文已经介绍了经典的KMP算法,本文继续介绍KMP算法的扩展,即扩展KMP算法。

问题定义:给定两个字符串S和T(长度分别为n和m),下标从0开始,定义extend[i]等于S[i]...S[n-1]与T的最长相同前缀的长度,求出所有的extend[i]。举个例子,看下表:

i 0 1 2 3 4 5 6 7
S a a a a a b b b
T a a a a a c
extend[i] 5 4 3 2 1 0 0 0

为什么说这是KMP算法的扩展呢?显然,如果在S的某个位置i有extend[i]等于m,则可知在S中找到了匹配串T,并且匹配的首位置是i。而且,扩展KMP算法可以找到S中所有T的匹配。接下来具体介绍下这个算法。

一:算法流程

(1)

扩展KMP算法_第1张图片

如上图,假设当前遍历到S串位置i,即extend[0]...extend[i - 1]这i个位置的值已经计算得到。设置两个变量,a和p。p代表以a为起始位置的字符匹配成功的最右边界,也就是"p = 最后一个匹配成功位置 + 1"。相较于字符串T得出,S[a...p)等于T[0...p-a)

再定义一个辅助数组int next[],其中next[i]含义为:T[i]...T[m - 1]与T的最长相同前缀长度,m为串T的长度。举个例子:

i 0 1 2 3 4 5
T a a a a a c
next[i] 6 4 3 2 1 0

(2)

扩展KMP算法_第2张图片

S[i]对应T[i - a],如果i + next[i - a] < p,如上图,三个椭圆长度相同,根据next数组的定义,此时extend[i] = next[i - a]

(3)

扩展KMP算法_第3张图片

如果i + next[i - a] == p呢?如上图,三个椭圆都是完全相同的,S[p] != T[p - a]T[p - i] != T[p - a],但S[p]有可能等于T[p - i],所以我们可以直接从S[p]T[p - i]开始往后匹配,加快了速度。

(4)

扩展KMP算法_第4张图片

如果i + next[i - a] > p呢?那说明S[i...p)T[i-a...p-a)相同,注意到S[p] != T[p - a]T[p - i] == T[p - a],也就是说S[p] != T[p - i],所以就没有继续往下判断的必要了,我们可以直接将extend[i]赋值为p - i

(5)最后,就是求解next数组。我们再来看下next[i]extend[i]的定义:

  • next[i]T[i]...T[m - 1]与T的最长相同前缀长度;
  • extend[i]S[i]...S[n - 1]与T的最长相同前缀长度。

恍然大悟,求解next[i]的过程不就是T自己和自己的一个匹配过程嘛,下面直接看代码。

二:代码

#include 
#include 

using namespace std;

/* 求解 T 中 next[],注释参考 GetExtend() */
void GetNext(string & T, int & m, int next[])
{
    int a = 0, p = 0;
    next[0] = m;

    for (int i = 1; i < m; i++)
    {
        if (i >= p || i + next[i - a] >= p)
        {
            if (i >= p)
                p = i;

            while (p < m && T[p] == T[p - i])
                p++;

            next[i] = p - i;
            a = i;
        }
        else
            next[i] = next[i - a];
    }
}

/* 求解 extend[] */
void GetExtend(string & S, int & n, string & T, int & m, int extend[], int next[])
{
    int a = 0, p = 0;
    GetNext(T, m, next);

    for (int i = 0; i < n; i++)
    {
        if (i >= p || i + next[i - a] >= p) // i >= p 的作用:举个典型例子,S 和 T 无一字符相同
        {
            if (i >= p)
                p = i;

            while (p < n && p - i < m && S[p] == T[p - i])
                p++;

            extend[i] = p - i;
            a = i;
        }
        else
            extend[i] = next[i - a];
    }
}

int main()
{
    int next[100];
    int extend[100];
    string S, T;
    int n, m;
    
    while (cin >> S >> T)
    {
        n = S.size();
        m = T.size();
        GetExtend(S, n, T, m, extend, next);

        // 打印 next
        cout << "next:   ";
        for (int i = 0; i < m; i++)
            cout << next[i] << " ";
 
        // 打印 extend
        cout << "\nextend: ";
        for (int i = 0; i < n; i++)
            cout << extend[i] << " ";

        cout << endl << endl;
    }
    return 0;
}

数据测试如下:

aaaaabbb
aaaaac
next:   6 4 3 2 1 0
extend: 5 4 3 2 1 0 0 0

abc
def
next:   3 0 0
extend: 0 0 0

你可能感兴趣的:(c++,c,算法,数据结构)