- 【重构推荐系统】国产大模型驱动的电商个性化推荐完整实战:架构设计、推理优化与在线部署闭环
观熵
国产大模型部署实战全流程指南重构人工智能Agent智能体落地方案
个人简介作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与Agent架构设计。热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。我叫观熵。不是在控熵,就是在观测熵的流动个人主页:观熵个人邮箱:
[email protected]座右铭:愿科技之光,不止照亮智能,也照亮人心!专栏导航观熵系列专栏导航:AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到
- Python爬虫实战:全方位爬取知乎学习板块问答数据
Python爬虫项目
2025年爬虫实战项目python爬虫学习开发语言scrapy游戏
1.项目背景与爬取目标知乎是中国最大的知识问答社区,聚集了大量高质量的学习资源和经验分享。爬取知乎“学习”板块的问答数据,可以为学习资料整理、舆情分析、推荐系统开发等提供数据支持。本项目目标:爬取“学习”话题下的热门问答列表抓取每个问答的标题、作者、回答内容、点赞数、评论数等详细信息实现动态加载内容的抓取,包含图片和富文本避免被反爬机制限制,保证数据采集稳定结合数据分析,为后续应用打基础2.知乎“
- End-To-End 之于推荐-kuaishou OneRec 笔记
ASKED_2019
RecSys笔记
核心思想OneRec提出了一种统一的生成式推荐系统架构,打破了传统“召回-粗排-精排”级联式推荐流程,使用单一生成模型同时完成召回与排序任务。该系统由快手团队研发,并成功部署于短视频主场景。OnlineA/BTest表现:模型总观看时长平均观看时长OneRec-1B+IPA+1.68%+6.56%一Input处理Userpositiveactionsequence,将短视频的多模态表征,通过量化的
- 计算机毕业设计项目、管理系统、可视化大屏、大数据分析、协同过滤、推荐系统、SSM、SpringBoot、Spring、Mybatis、小程序项目编号1000-1499
lonzgzhouzhou
spring课程设计springboot
大家好,我是DeBug,很高兴你能来阅读!作为一名热爱编程的程序员,我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里,我将会结合实际项目经验,分享编程技巧、最佳实践以及解决问题的方法。无论你是初学者还是有一定经验的程序员,我都希望能够为你提供有价值的内容,帮助你更好地理解编程世界。让我们一起探索编程的乐趣,一起成长,一起学习,谢谢你们的支持与关注!【源码咨询】可接Java程序设计,Bug
- 腾讯混元API调用优化实战:用API网关实现流量控制+缓存+监控
1大模型API的调用挑战在接入腾讯混元大模型API的电商推荐系统项目中,我们面临三个核心挑战:突发流量冲击:促销活动期间API调用量激增300%,触发腾讯云限流策略(429错误)响应延迟波动:文本生成长内容时P99延迟高达2.8秒,影响用户体验异常诊断困难:错误日志分散在多台服务器,故障定位平均耗时47分钟传统解决方案如Nginx限流和Redis缓存存在配置分散、维护成本高等问题。API网关作为流
- Python爬取TMDB电影数据:从登录到数据存储的全过程
Eqwaak00
爬虫Pythonpython开发语言人工智能自动化
在当今数据驱动的时代,获取电影数据对于推荐系统、市场分析和个人项目都至关重要。本文将详细介绍如何使用Python构建一个完整的TMDB(TheMovieDatabase)爬虫,从登录认证到数据解析和存储的全过程。(本来博主也想在CSDN里面上白嫖结果没有一篇文章,然后......)1.项目概述TMDB是一个广受欢迎的电影数据库网站,包含了丰富的电影信息、演员数据和用户评分。我们的目标是构建一个爬虫
- 拷贝漫画网页版网址,Copymanga漫画官方网站入口及APP下载
拷贝漫画是一个专为漫画爱好者打造的在线阅读平台,提供海量漫画资源,涵盖日漫、韩漫、美漫、国漫及轻小说等多种类型,满足不同读者的口味需求。平台界面简洁友好,支持多设备同步阅读(如手机、电脑、平板),并提供高清画质与个性化设置,如亮度调节、字体大小、夜间模式等,确保阅读体验舒适。此外,平台具备智能推荐系统,根据用户浏览历史、收藏记录和偏好推荐漫画,帮助用户发现新内容。社区互动功能也十分活跃,用户可分享
- 60天python训练营打卡day20
tan90�=
python60天打卡python开发语言
学习目标:60天python训练营打卡学习内容:DAY20奇异值SVD分解奇异值分解这个理论,对于你未来无论是做图像处理、信号处理、特征提取、推荐系统等都非常重要,所以需要单独抽出来说一下这个思想。—甚至我在非常多文章中都看到单独用它来做特征提取(伪造的很高大上),学会这个思想并不复杂没学过线代的不必在意,推导可以不掌握,关注输入输出即可。今天这期有点类似于帮助大家形成闭环—考研数学不是白考的知识
- 贝叶斯算法:从概率推断到智能决策的基石
weixin_47233946
算法算法
##引言在人工智能与机器学习的蓬勃发展中,贝叶斯算法以其独特的概率推理方式和动态更新的特性,在垃圾邮件过滤、疾病诊断、推荐系统等关键领域展现出强大的应用价值。本文将从概率论基础出发,深入解析贝叶斯算法的核心思想及其实现方式,揭示这一统计学方法如何演变为现代智能系统的决策利器。---##一、贝叶斯定理:概率之门的钥匙###1.1基本公式表述贝叶斯定理的数学表达式揭示事件间的关联关系:$$P(A|B)
- 用 DeepSeek 打造智能高考志愿填报推荐系统
摆烂大大王
deepseek高考deepseek人工智能数据库AIGC
告别选择困难!基于大模型的精准志愿推荐方案一、背景痛点:高考志愿填报的困境每年高考结束后,数百万考生面临共同难题:如何用有限的分数选择最优的院校和专业?传统方式依赖手册翻阅、经验咨询,存在三大痛点:信息过载:全国近3000所高校、上万个专业组合动态复杂:历年分数线波动、招生计划变化匹配低效:个人兴趣与院校资源难以精准对接二、解决方案:DeepSeek-R1智能推荐系统架构系统核心流程
- Milvus 向量数据库详解与实践指南
JJJ@666
基础知识(人工智能AI)milvus向量数据库图像检索推荐系统
一、Milvus核心介绍1.什么是Milvus?Milvus是一款开源、高性能、可扩展的向量数据库,专门为海量向量数据的存储、索引和检索而设计。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、语义搜索、智能问答、多模态数据处理等AI应用场景。它能够高效处理:嵌入向量(Embeddings)特征向量(FeatureVectors)任何高维数值向量2.核心特性特性说明
- 用Python爬取Goodreads书评与推荐系统数据
Python爬虫项目
python开发语言爬虫php数据分析
一、项目背景与目标Goodreads是全球最大的图书社交网络,用户可以对读过的图书进行评分、撰写书评并获取推荐。本文目标是:自动化爬取Goodreads某本书的热门短评(reviews);抓取Goodreads自动推荐的相似图书列表(relatedbooks);获取每条评论的:评分、评论者昵称、评论内容;获取推荐图书的:书名、评分、作者、链接等信息;使用现代Python异步技术高效爬取并保存为CS
- 从“信息茧房”到“内容生态”:一个算法解救了我的推荐系统(3085. 成为 K 特殊字符串需要删除的最少字符数)
满分观察网友z
算法解构与应用算法数据库
从“信息茧房”到“内容生态”:一个算法解救了我的推荐系统大家好,我是你们的老朋友,一个在代码世界里摸爬滚打多年的开发者。今天想和大家聊聊一个我最近在项目中遇到的“甜蜜的烦恼”,以及我是如何从一个看似不相关的LeetCode算法题中找到灵感,并最终完美解决问题的。我遇到了什么问题?故事得从我们团队正在迭代的一个核心功能——“个性化内容推荐”说起。最初的版本很简单粗暴:基于用户的历史点击、收藏等行为,
- 【Python使用】嘿马推荐系统全知识和项目开发教程第2篇:1.4 案例--基于协同过滤的电影推荐,1.5 推荐系统评估
python后端
教程总体简介:1.1推荐系统简介学习目标1推荐系统概念及产生背景2推荐系统的工作原理及作用3推荐系统和Web项目的区别1.3推荐算法1推荐模型构建流程2最经典的推荐算法:协同过滤推荐算法(CollaborativeFiltering)3相似度计算(SimilarityCalculation)4协同过滤推荐算法代码实现:二根据用户行为数据创建ALS模型并召回商品2.0用户行为数据拆分2.1预处理be
- Atomgit 客户端实战(十六):元服务开发 —— 构建无界交互的全场景服务网络
逻极
鸿蒙harmonyosautomgit交互harmonyos华为缓存typescript开放原子鸿蒙
Atomgit客户端实战(十六):元服务开发——构建无界交互的全场景服务网络在完成AI推荐系统开发后,Atomgit客户端已具备智能内容分发能力。随着鸿蒙生态的不断演进,**元服务(MetaService)**成为构建全场景服务网络的关键技术。它通过统一的服务描述语言,实现跨设备、跨应用的服务无缝调用,真正践行“服务即入口”的设计理念。本篇将深入元服务开发,讲解如何将客户端核心功能转化为可共享、可
- 彻底告别迷茫,探索机器学习的终极指南
wylee
机器学习人工智能
引言:信息洪流中的灯塔,你是否曾迷失方向?在这个AI技术日新月异的时代,机器学习(MachineLearning,ML)无疑是科技领域最耀眼、最具颠覆性的力量之一。从AlphaGo战胜人类围棋冠军,到智能推荐系统精准预测你的喜好,再到自动驾驶技术悄然改变出行方式,机器学习的力量无处不在。然而,对于无数渴望投身机器学习、或者希望在现有领域深耕的开发者而言,这股信息洪流也带来了前所未有的挑战:知识体系
- AI转型指南
HeartException
人工智能学习机器学习
以下是为计算机学生/在职人员撰写《AI转型指南》的目录框架设计,兼顾系统性与实操性,采用模块化结构便于读者按需学习,前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站一、AI行业全景扫描(认知篇)技术图谱解构机器学习/深度学习/强化学习的技术边界NLP/CV/语音/推荐系统等细分赛道的就业热度对比传统计算机技能与AI能力的交叉点(如分布式计算、系统
- 使用 Qdrant 实现高效的向量相似性搜索
antja_
算法人工智能机器学习
Qdrant是一个功能强大的向量相似性搜索引擎,为您提供生产就绪的服务以及方便的API,用于存储、搜索和管理点——带有附加有效载荷的向量。Qdrant专注于支持扩展过滤,以满足复杂的搜索需求。技术背景介绍在现代应用中,向量相似性搜索是处理大规模数据的重要工具。例如,在推荐系统中,我们需要根据用户行为找到相似的产品,在搜索引擎中,我们需要根据查询找到相关的内容。Qdrant提供了一种高效且可扩展的解
- 【推荐系统】多任务学习之ESMM模型
山顶夕景
推荐算法深度学习推荐算法深度学习
学习总结ESMM首创了利用用户行为序列数据在完整样本空间建模,并提出利用学习CTR和CTCVR的辅助任务,迂回学习CVR,避免了传统CVR模型经常遭遇的样本选择偏差和训练数据稀疏的问题,取得了显著的效果。ESMM解决了真实场景中CVR中的SSB和DS问题。CVR(Conversionrate)转化率:衡量CPA广告效果的指标,用户点击广告到成为一个有效的激活(如注册额或者成为付费用户)的转化率,所
- Datawhale 2025年2月组队学习- 推荐系统教程FunRec #Task3
dxnb22
Datawhale学习笔记人工智能推荐算法
第二章基于向量的召回1.item2vec未完待续……2.youtubeDnn3.经典双塔模型
- Python打卡训练营day20-奇异值SVD分解
sak77
python打卡训练营python机器学习奇异值分解SVD
知识点回顾:线性代数概念回顾(可不掌握)奇异值推导(可不掌握)奇异值的应用特征降维:对高维数据减小计算量、可视化数据重构:比如重构信号、重构图像(可以实现有损压缩,k越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD(或其变种如FunkSVD,SVD
- 第11章:Neo4j实际应用案例
理论知识和技术细节固然重要,但真正理解Neo4j的价值在于了解它如何解决实际业务问题。本章将探讨Neo4j在各个领域的实际应用案例,包括社交网络分析、推荐系统、知识图谱以及欺诈检测与安全分析。通过这些案例,读者可以了解如何将前面章节学到的知识应用到实际项目中,以及如何解决特定领域的挑战。11.1社交网络分析社交网络是图数据库最自然的应用场景之一,因为社交关系本质上就是一个图结构。Neo4j在社交网
- Dify文档喂不饱模型?别慌!Embedding 微调就是你的救星!
大模型玩家
embeddingai自然语言处理人工智能语言模型学习程序员
在AI时代,Embedding是NLP任务的基石,直接决定了你的模型是「聪明绝顶」还是「笨拙不堪」。你是否遇到过这些让人头疼的问题:做智能问答时,模型总是答非所问,用户一脸懵圈?做推荐系统时,用户翻遍推荐内容,还是觉得「没一个对味」?做语义搜索时,搜索结果五花八门,相关性差到让人抓狂?这些问题的罪魁祸首,往往就是你的Embedding不够精准!通用Embedding在特定领域常常「水土不服」:在电
- SHAP(夏普利加性解释,Shapley Additive Explanations)
阳光明媚大男孩
人工智能机器学习深度学习
揭秘机器学习模型的“黑盒”:什么是SHAP?在人工智能(AI)时代,机器学习模型被广泛应用于医疗、金融、推荐系统等众多领域。然而,这些模型往往像一个“黑盒”,让人难以理解它们是如何做出预测的。SHAP(夏普利加性解释,ShapleyAdditiveExplanations为我们提供了一把钥匙,帮助揭开模型决策的神秘面纱!这篇科普博文将带你走进SHAP的世界,了解它是什么、如何工作,以及为什么它如此
- Qdrant:从连接到查询的实战指南
Mr_Chenph
AI乱炖向量数据库qdrant1.14.2
Qdrant是近年来非常热门的向量数据库,广泛用于文本搜索、推荐系统、图像相似度匹配等场景。本文将带你从最实用的三个层面入手,快速上手并用好Qdrant的核心能力:✅远程连接配置详解️集合创建参数全面解释查询参数高级用法本例为Qdrant1.14.2(注意!)✅一、远程连接配置详解(QdrantClient)在本地你可以用host和port来连接Qdrant服务,而在生产中,通常使用QdrantC
- Agent 在AI里是什么意思?
薇远镖局
AI人工智能人工智能
Agent的核心特点自主性无需外部指令即可独立运行,根据环境信息调整行为(例如自动驾驶汽车根据路况变道)。感知与反馈通过传感器、数据输入等方式感知环境(如摄像头、文本输入、数据库),并实时更新决策。目标导向围绕明确目标行动(例如推荐系统的目标是最大化用户点击率)。适应性能应对环境变化(如聊天机器人根据用户情绪调整回复)。Agent的常见类型类型特点与例子反应式Agent基于当前环境直接响应(如自动
- 如何使用Python爬虫抓取美团餐厅信息:从数据获取到分析的完整指南
Python爬虫项目
python爬虫开发语言okhttp深度学习
前言随着互联网的发展,线上平台已经成为了我们生活的重要一部分,尤其是在餐饮行业。美团是中国最大的生活服务平台之一,提供了餐饮、外卖、酒店、旅游等多种服务。它的餐厅推荐系统涵盖了众多商户的信息,包括餐厅的评分、评论、菜单等内容。通过对这些数据的抓取与分析,用户可以了解不同餐厅的受欢迎程度、菜品口味,以及顾客的评价等信息,这对餐饮行业的商家和消费者来说都具有非常重要的价值。在本文中,我们将介绍如何使用
- TensorFlow与Pytorch的区别
m0_49517971
pytorch
TensorFlow是一个开源的机器学习库,由Google于2015年发布。它能够进行深度神经网络的训练和推理,具有高效、灵活、跨平台等优点,被广泛应用于图像识别、语音识别、自然语言处理、推荐系统等领域。TensorFlow的基本概念包括:Tensor:Tensor是TensorFlow中的基本数据结构,可以看作是多维数组。TensorFlow中的计算都是基于Tensor进行的。Graph:Gra
- python基于spark的新闻推荐系统数据分析可视化爬虫的设计与实现pycharm毕业设计项目
QQ_188083800
pythonspark数据分析
目录具体实现截图课题项目源码功能介绍可定制设计功能创新点开发流程Scrapy爬虫框架爬虫核心代码展示论文书写大纲详细视频演示源码获取具体实现截图课题项目源码功能介绍基于Python大数据技术进行网络爬虫的设计,框架使用Scrapy.系统设计支持以下技术栈前端开发框架:vue.js数据库mysql版本不限后端语言框架支持:1java(SSM/springboot)-idea/eclipse2.pyt
- 向量检索中的 ANN(Approximate Nearest Neighbor)技术
XiaoQiong.Zhang
AI人工智能
向量检索中的ANN(ApproximateNearestNeighbor)技术是一种在高维空间中高效查找与查询向量q最相似的Top-K个向量的方法,其核心在于牺牲一定的精度(召回率)以换取比精确最近邻搜索(ExactNN)高数个数量级的查询速度。它广泛应用于图像/视频检索、自然语言处理(如语义搜索、问答)、推荐系统、生物信息学等场景。⸻一、基本问题定义目标:给定一个查询向量q,在一个庞大的向量集合
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla