CurrentHashMap源码剖析

什么是concurrenthashmap

concurrenthashmap(简称chm) 是java1.5新引入的java.util.concurrent包的成员,作为hashtable的替代。为什么呢,hashtable采用了同步整个方法的结构。虽然实现了线程安全但是性能也就大大降低了 而hashmap呢,在并发情况下会很容易出错。所以也促进了安全并且能在多线程中使用的concurrenthashmap

如何实现concurrenthashmap

首先来看看构造方法吧
这是最底层的构造方法

public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0;
        int ssize = 1;
        while (ssize < concurrencyLevel) {
            ++sshift;//代表ssize转换的次数
            ssize <<= 1;
        }
        this.segmentShift = 32 - sshift;//目前不知道有什么用,是在后来的segment定位中使用
        this.segmentMask = ssize - 1;//segment定位使用
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
        Segment s0 =
            new Segment(loadFactor, (int)(cap * loadFactor),
                             (HashEntry[])new HashEntry[cap]);
        Segment[] ss = (Segment[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }

这里我想和hashmap对比来分析,因为他们长得很像,hashmap是entry[],而chm就是segments[].可以说每一个segment都是一个hashmap,想要进入segment还需要获取对应的锁。默认conccurrenthashmap的segment数是16.每个segment内的hashentry数组大小也是16个。threadshord是16*0.75

chm如何定位

先看看chm的hash方法        
private int hash(Object k) {
        int h = hashSeed;

        if ((0 != h) && (k instanceof String)) {
            return sun.misc.Hashing.stringHash32((String) k);
        }

        h ^= k.hashCode();

        // Spread bits to regularize both segment and index locations,
        // using variant of single-word Wang/Jenkins hash.
        h += (h <<  15) ^ 0xffffcd7d;
        h ^= (h >>> 10);
        h += (h <<   3);
        h ^= (h >>>  6);
        h += (h <<   2) + (h << 14);
        return h ^ (h >>> 16);
    }

这里对key的hash值再哈希了一次。使用的方法是wang/jenkins的哈希算法,这里再hash是为了减少hash冲突。如果不这样做的话,会出现大多数值都在一个segment上,这样就失去了分段锁的意义。
以上代码只是算出了key的新的hash值,但是怎么用这个hash值定位呢

  • 如果我们要取得一个值,首先我们肯定需要先知道哪个segment,然后再知道hashentry的index,最后一次循环遍历该index下的元素

       确定segment,:(h >>> segmentShift) & segmentMask。默认使用h的前4位,segmentMask为15
       确定index:(tab.length - 1) & h  hashentry的长度减1,用之前确定了sement的新h计算
       循环:for (HashEntry e = (HashEntry) UNSAFE.getObjectVolatile
                               (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                           e != null; e = e.next)
                           
         比较:if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                                return e.value;
    

chm取得元素

public V get(Object key) {
        Segment s; // manually integrate access methods to reduce overhead
        HashEntry[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        if ((s = (Segment)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            for (HashEntry e = (HashEntry) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }

如果我们要取得一个值,首先我们肯定需要先知道哪个segment,然后再知道hashentry的index,最后一次循环遍历该index下的元素

       确定segment,:(h >>> segmentShift) & segmentMask。默认使用h的前4位,segmentMask为15
       确定index:(tab.length - 1) & h  hashentry的长度减1,用之前确定了sement的新h计算
       循环:for (HashEntry e = (HashEntry) UNSAFE.getObjectVolatile(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);e != null; e = e.next)
       比较:if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                 return e.value;

chm 存放元素

  public V put(K key, V value) {
            Segment s;
            if (value == null)
                throw new NullPointerException();
            int hash = hash(key);
            int j = (hash >>> segmentShift) & segmentMask;
            if ((s = (Segment)UNSAFE.getObject          // nonvolatile; recheck
                 (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
                s = ensureSegment(j);
            return s.put(key, hash, value, false);
        }   
    在jdk中,native方法的实现是没办法看的,请下载openjdk来看。在put方法中实际是需要判断是否需要扩容的
    扩容的时机选在阀值(threadshold)装满时,而不像hashmap是在装入后,再判断是否装满并扩容
    这里就是concurrenthashmap的高明之处,有可能会出现扩容后就没有新数据的情况

concrrenthashmap 容量判断

public int size() {
        final Segment[] segments = this.segments;
        int size;
        boolean overflow; // true if size overflows 32 bits
        long sum;         // sum of modCounts
        long last = 0L;   // previous sum
        int retries = -1; // first iteration isn't retry
        try {
            for (;;) {
                if (retries++ == RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        ensureSegment(j).lock(); // force creation
                }
                sum = 0L;
                size = 0;
                overflow = false;
                for (int j = 0; j < segments.length; ++j) {
                    Segment seg = segmentAt(segments, j);
                    if (seg != null) {
                        sum += seg.modCount;
                        int c = seg.count;
                        if (c < 0 || (size += c) < 0)
                            overflow = true;
                    }
                }
                if (sum == last)
                    break;
                last = sum;
            }
        } finally {
            if (retries > RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    segmentAt(segments, j).unlock();
            }
        }
        return overflow ? Integer.MAX_VALUE : size;
    }

这段代码写的真巧妙,在统计concurrenthashmap的数量时,有多线程情况,但是并不是一开始就锁住修改结构的方法,比如put,remove等
先执行一次统计,然后在执行一次统计,如果两次统计结果都一样,则没问题。反之就锁修改结构的方法。这样做效率会高很多,在统计的时候查询依旧可以进行

chm是否为空判断

public boolean isEmpty() {
       
        long sum = 0L;
        final Segment[] segments = this.segments;
        for (int j = 0; j < segments.length; ++j) {
            Segment seg = segmentAt(segments, j);
            if (seg != null) {
                if (seg.count != 0)
                    return false;
                sum += seg.modCount;
            }
        }
        if (sum != 0L) { // recheck unless no modifications
            for (int j = 0; j < segments.length; ++j) {
                Segment seg = segmentAt(segments, j);
                if (seg != null) {
                    if (seg.count != 0)
                        return false;
                    sum -= seg.modCount;
                }
            }
            if (sum != 0L)
                return false;
        }
        return true;
    }
即使在空的情况下也不能仅仅只靠segment的计数器来判断,还是因为多线程,count的值随时在变,所以追加判断
modcount前后是否一致,如果一致,说明期间没有修改。

chm删除元素

final V remove(Object key, int hash, Object value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry e = entryAt(tab, index);
                HashEntry pred = null;
                while (e != null) {
                    K k;
                    HashEntry next = e.next;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        V v = e.value;
                        if (value == null || value == v || value.equals(v)) {
                            if (pred == null)
                                setEntryAt(tab, index, next);
                            else
                                pred.setNext(next);
                            ++modCount;
                            --count;
                            oldValue = v;
                        }
                        break;
                    }
                    pred = e;
                    e = next;
                }
            } finally {
                unlock();
            }
            return oldValue;
        }   
        

思考

1.hashmap的默认大小是1<<4,即16,但是concurrenthashmap却直接16.
2.(k << SSHIFT) + SBASE 这段话我是真没懂,定位的时候会用
3.get方法中直接写的定位方法,为什么不像remove一样调用segmentforhash呢
4.concurrenthashmap和hashtable不能允许key或者value为null。因为在多线程情况下无法判断返回一个null值到底是key为null还是value为null
hashmap是非多线程的,所以可以key为null何value为null

你可能感兴趣的:(java)