有序列化就会有反序列化,反序列化的操作是在Kafka Consumer中完成的,使用起来只需要配置一下key.deserializer和value.deseriaizer。对应上面自定义的Company类型的Deserializer就需要实现org.apache.kafka.common.serialization.Deserializer接口,这个接口同样有三个方法:
public void configure(Map
public byte[] serialize(String topic, T data):用来执行反序列化。如果data为null建议处理的时候直接返回null而不是抛出一个异常。
public void close():用来关闭当前序列化器。
下面就来看一下DemoSerializer对应的反序列化的DemoDeserializer,详细代码如下:
public class DemoDeserializer implements Deserializer {
public void configure(Map configs, boolean isKey) {}
public Company deserialize(String topic, byte[] data) {
if (data == null) {
return null;
}
if (data.length < 8) {
throw new SerializationException("Size of data received by DemoDeserializer is shorter than expected!");
}
ByteBuffer buffer = ByteBuffer.wrap(data);
int nameLen, addressLen;
String name, address;
nameLen = buffer.getInt();
byte[] nameBytes = new byte[nameLen];
buffer.get(nameBytes);
addressLen = buffer.getInt();
byte[] addressBytes = new byte[addressLen];
buffer.get(addressLen);
try {
name = new String(nameBytes, "UTF-8");
address = new String(addressBytes, "UTF-8");
} catch (UnsupportedEncodingException e) {
throw new SerializationException("Error occur when deserializing!");
}
return new Company(name,address);
}
public void close() {}
}
有些读者可能对新版的Consumer不是很熟悉,这里顺带着举一个完整的消费示例,并以DemoDeserializer作为消息Value的反序列化器。
Properties properties = new Properties();
properties.put("bootstrap.servers", brokerList);
properties.put("group.id", consumerGroup);
properties.put("session.timeout.ms", 10000);
properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("value.deserializer", "com.hidden.client.DemoDeserializer");
properties.put("client.id", "hidden-consumer-client-id-zzh-2");
KafkaConsumer consumer = new KafkaConsumer(properties);
consumer.subscribe(Arrays.asList(topic));
try {
while (true) {
ConsumerRecords records = consumer.poll(100);
for (ConsumerRecord record : records) {
String info = String.format("topic=%s, partition=%s, offset=%d, consumer=%s, country=%s",
record.topic(), record.partition(), record.offset(), record.key(), record.value());
System.out.println(info);
}
consumer.commitAsync(new OffsetCommitCallback() {
public void onComplete(Map offsets, Exception exception) {
if (exception != null) {
String error = String.format("Commit failed for offsets {}", offsets, exception);
System.out.println(error);
}
}
});
}
} finally {
consumer.close();
}
有些时候自定义的类型还可以和Avro、ProtoBuf等联合使用,而且这样更加的方便快捷,比如我们将前面Company的Serializer和Deserializer用Protostuff包装一下,由于篇幅限制,笔者这里只罗列出对应的serialize和deserialize方法,详细参考如下:
public byte[] serialize(String topic, Company data) {
if (data == null) {
return null;
}
Schema schema = (Schema) RuntimeSchema.getSchema(data.getClass());
LinkedBuffer buffer = LinkedBuffer.allocate(LinkedBuffer.DEFAULT_BUFFER_SIZE);
byte[] protostuff = null;
try {
protostuff = ProtostuffIOUtil.toByteArray(data, schema, buffer);
} catch (Exception e) {
throw new IllegalStateException(e.getMessage(), e);
} finally {
buffer.clear();
}
return protostuff;
}
public Company deserialize(String topic, byte[] data) {
if (data == null) {
return null;
}
Schema schema = RuntimeSchema.getSchema(Company.class);
Company ans = new Company();
ProtostuffIOUtil.mergeFrom(data, ans, schema);
return ans;
}
如果Company的字段很多,我们使用Protostuff进一步封装一下的方式就显得简洁很多。不过这个不是最主要的,而最主要的是经过Protostuff包装之后,这个Serializer和Deserializer可以向前兼容(新加字段采用默认值)和向后兼容(忽略新加字段),这个特性Avro和Protobuf也都具备。
自定义的类型有一个不得不面对的问题就是Kafka Producer和Kafka Consumer之间的序列化和反序列化的兼容性,试想对于StringSerializer来说,Kafka Consumer可以顺其自然的采用StringDeserializer,不过对于Company这种专用类型,某个服务使用DemoSerializer进行了序列化之后,那么下游的消费者服务必须也要实现对应的DemoDeserializer。再者,如果上游的Company类型改变,下游也需要跟着重新实现一个新的DemoSerializer,这个后面所面临的难题可想而知。所以,如无特殊需要,笔者不建议使用自定义的序列化和反序列化器;如有业务需要,也要使用通用的Avro、Protobuf、Protostuff等序列化工具包装,尽可能的实现得更加通用且向前后兼容。
题外话,对于Kafka的“深耕者”Confluent来说,还有其自身的一套序列化和反序列化解决方案(io.confluent.kafka.serializer.KafkaAvroSerializer),GitHub上有相关资料,读者如有兴趣可以自行扩展学习。
本文的重点是你有没有收获与成长,其余的都不重要,希望读者们能谨记这一点。同时我经过多年的收藏目前也算收集到了一套完整的学习资料,包括但不限于:分布式架构、高可扩展、高性能、高并发、Jvm性能调优、Spring,MyBatis,Nginx源码分析,Redis,ActiveMQ、、Mycat、Netty、Kafka、Mysql、Zookeeper、Tomcat、Docker、Dubbo、Nginx等多个知识点高级进阶干货,希望对想成为架构师的朋友有一定的参考和帮助