作为鸡生蛋系列文章,这里主要关注Linux input系统,
主要为触摸事件上报流程.
- Linux input系统数据上报流程
- Android InputManager分析
- AMS startActivity()
- WMS 分析
读该文章最好有对linux驱动的入门知识.
其实当你自己去分析了input系统后,再分析别的就相对很轻松了,
linux里好多套路都差不多的.
本文例子以ft6236.c驱动为例, 当然你也可以用goodix或者别的触摸来分析.
但是分析基于的内核版本用4.19.6(我写这篇文档时最新稳定版)
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/?h=v4.19.6
文档可参看
<
<
触屏设备驱动
eg:
https://source.codeaurora.org/quic/la/kernel/msm/tree/drivers/input/touchscreen/ft6236.c?h=aosp-common/android-4.4-p
static irqreturn_t ft6236_interrupt(int irq, void *dev_id)
{
......//5. 中断处理中读数据
error = ft6236_read(ft6236->client, 0, sizeof(buf), &buf);
......
for (i = 0; i < touches; i++) {
struct ft6236_touchpoint *point = &buf.points[i];
u16 x = ((point->xhi & 0xf) << 8) | buf.points[i].xlo;
u16 y = ((point->yhi & 0xf) << 8) | buf.points[i].ylo;
......
input_mt_slot(input, id);
input_mt_report_slot_state(input, MT_TOOL_FINGER, act);
......//5. 上报数据, ABS即坐标的绝对值
input_report_abs(input, ABS_MT_POSITION_X, x);
input_report_abs(input, ABS_MT_POSITION_Y, y);
......
input_mt_sync_frame(input);
input_sync(input);
......
}
//2. probe函数, 当设备与驱动匹配上时会执行该函数
static int ft6236_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
......// 3. input设备申请
input = devm_input_allocate_device(dev);
......
ft6236->input = input;
input->name = client->name;
input->id.bustype = BUS_I2C;
......// 3. input设备参数/能力申明
input_set_abs_params(input, ABS_MT_POSITION_X, 0,
ft6236->max_x, fuzz_x, 0);
input_set_abs_params(input, ABS_MT_POSITION_Y, 0,
ft6236->max_y, fuzz_y, 0);
......
error = input_mt_init_slots(input, FT6236_MAX_TOUCH_POINTS,
INPUT_MT_DIRECT | INPUT_MT_DROP_UNUSED);
...... 5. 中断来时回调到ft6236_interrupt
error = devm_request_threaded_irq(dev, client->irq, NULL,
ft6236_interrupt, IRQF_ONESHOT,
client->name, ft6236);
......4. 注册为Input类设备
error = input_register_device(input);
......
}
//of table和id table在设备和驱动匹配时会用到
#ifdef CONFIG_OF
static const struct of_device_id ft6236_of_match[] = {
.....
MODULE_DEVICE_TABLE(of, ft6236_of_match);
#endif
static const struct i2c_device_id ft6236_id[] = {
.....
MODULE_DEVICE_TABLE(i2c, ft6236_id);
static struct i2c_driver ft6236_driver = {
.driver = {
.name = "ft6236",
.of_match_table = of_match_ptr(ft6236_of_match),
},
.probe = ft6236_probe,
.id_table = ft6236_id,
};
//1. 模块init, 这是一个宏定义, 里面包含了, module_init, i2c的添加驱动注册,
//module_init可以理解为对该文件的加载顺序,其它的还有core_initcall late_initcall等
module_i2c_driver(ft6236_driver);
简单说明下实现一个触屏驱动包含以下内容
- 文件和模块init
- 按照linux设备模型填充i2c驱动(设备一般在dts里配置,这里不提)
- 设备和驱动匹配上后,执行驱动的probe()函数, probe()里申请input device, 能力填充, 再在里面将设备注册为input类
- 当点击屏后,中断来了,回调中断处理函数
- 中断处理里, 通过i2c的方法从硬件读取数据,并进行上报.
注意, 触屏上报有个多点触摸协议,可参看文档
<
上报--input_report_abs()
我们的重点是想知道数据上报流程, 所以自然要分析input_report_abs()
include/linux/input.h
static inline void input_report_abs(struct input_dev *dev, unsigned int code, int value)
{
input_event(dev, EV_ABS, code, value);
}
可以看到其为内联函数, 为input_event(,EV_ABS, ...)的二次封装;
input_report_key() -+ +- EV_KEY
input_report_rel() -| |- EV_REL
input_report_abs() -| |- EV_ABS
input_report_ff_status() -|--input_event() --|- EV_FF_STATUS
input_report_switch() -| |- EV_SW
input_sync() -| |- EV_SYN, SYN_REPORT
input_mt_sync() -+ +- EV_SYN, SYN_MT_REPORT
对于我们的根据来说,即
input_event(dev, EV_ABS, ABS_MT_POSITION_X, 坐标值)
drivers/input/input.c
void input_event(struct input_dev *dev,
unsigned int type, unsigned int code, int value)
{
....//event是否支持, 这个和驱动里probe()时填充能力,设置参数有关,略过
if (is_event_supported(type, dev->evbit, EV_MAX)) {
....
input_handle_event(dev, type, code, value);
...
}
static void input_handle_event(struct input_dev *dev,
unsigned int type, unsigned int code, int value)
{
int disposition = input_get_disposition(dev, type, code, &value); //得到disposition
......
if (disposition & INPUT_FLUSH) {
if (dev->num_vals >= 2)
input_pass_values(dev, dev->vals, dev->num_vals);
dev->num_vals = 0;
} else if (dev->num_vals >= dev->max_vals - 2) {
dev->vals[dev->num_vals++] = input_value_sync;
input_pass_values(dev, dev->vals, dev->num_vals); //**<--> 重点,
dev->num_vals = 0;
}
}
还记得在驱动中断回调函数ft6236_interrupt()里,上报值时,我们调用了这些函数,
input_report_abs(input, ABS_MT_POSITION_X, x);
input_report_abs(input, ABS_MT_POSITION_Y, y);
......
input_mt_sync_frame(input);
input_sync(input);
这些值到input_event()对应着
input_report_abs() -| |- EV_ABS
input_sync() -|--input_event() --|- EV_SYN, SYN_REPORT
input_mt_sync() -+ +- EV_SYN, SYN_MT_REPORT
所以我们可以简单看下input_handle_event() --> input_get_disposition()
EV_SYN事件和EV_ABS的返回值
static int input_get_disposition(struct input_dev *dev,
unsigned int type, unsigned int code, int *pval)
{
int disposition = INPUT_IGNORE_EVENT;
......
switch (type) {
case EV_SYN:
switch (code) {
case SYN_CONFIG:
disposition = INPUT_PASS_TO_ALL;
break;
case SYN_REPORT:
disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
break;
case SYN_MT_REPORT:
disposition = INPUT_PASS_TO_HANDLERS;
break;
}
break;
......
case EV_ABS:
if (is_event_supported(code, dev->absbit, ABS_MAX))
disposition = input_handle_abs_event(dev, code, &value);//这个可以看看,他会对相同值进行过滤,返回INPUT_IGNORE_EVENT
break;
......
return disposition;
}
让我们回到input_handle_event() --> input_pass_values()
static void input_pass_values(struct input_dev *dev,
struct input_value *vals, unsigned int count)
{
......
if (handle) {
count = input_to_handler(handle, vals, count);
} else {
list_for_each_entry_rcu(handle, &dev->h_list, d_node)
if (handle->open) {
count = input_to_handler(handle, vals, count);
if (!count)
break;
}
}
......
}
其重点函数为input_to_handler()
static unsigned int input_to_handler(struct input_handle *handle,
struct input_value *vals, unsigned int count)
{
struct input_handler *handler = handle->handler;
......
if (handler->filter) {
for (v = vals; v != vals + count; v++) {
if (handler->filter(handle, v->type, v->code, v->value))
continue;
.......
}
......
if (handler->events)
handler->events(handle, vals, count); //<--handler的events.
else if (handler->event)
for (v = vals; v != vals + count; v++)
handler->event(handle, v->type, v->code, v->value);
return count;
}
分析到这个函数的时候, 似乎有些断了,
我们看到有三个handler->filter(), handler->events(), handler->event()函数调用,
哪这三个函数又调用到哪儿去了呢?这时又该如何继续分析呢?
handler (input_register_device() --> handler)
对此,
- 我们可以搜索下哪儿在给这三个函数赋值,但情况不太乐观;
- 我们回想下在驱动probe里,我们与input相关的有如下,
static int ft6236_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
......// 3. input设备申请
input = devm_input_allocate_device(dev);
......// 3. input设备参数/能力申明
input_set_abs_params(input, ABS_MT_POSITION_X, 0,
ft6236->max_x, fuzz_x, 0);
input_set_abs_params(input, ABS_MT_POSITION_Y, 0,
ft6236->max_y, fuzz_y, 0);
......
error = input_mt_init_slots(input, FT6236_MAX_TOUCH_POINTS,
INPUT_MT_DIRECT | INPUT_MT_DROP_UNUSED);
......4. 注册为Input类设备
error = input_register_device(input);
所以有很大概率是在申请设备, 设备能力, slots设置,注册input类这几个函数里面实现的.
我们这里就直接看答案
int input_register_device(struct input_dev *dev)
{
......//前面有些默认能力参数等的设置,略过
error = device_add(&dev->dev);
......//将设备节点加入到input_dev_list
list_add_tail(&dev->node, &input_dev_list);
//遍历input_handler_list, 然后调用input_attach_handler,看匹配的handler
list_for_each_entry(handler, &input_handler_list, node)
input_attach_handler(dev, handler);
.......
}
input_dev_list 和 input_handler_list, 是定义的两个list,
static LIST_HEAD(input_dev_list);
static LIST_HEAD(input_handler_list);
我们可以猜测,所有的input dev和handler都会挂在这两个list里,
然后调用上面的input_attach_handler()进行两者的匹配,
对于dev list我们不关注,有兴趣的同学可自己看下,
重点想要知道的是handler相关的,
那我们的问题自然又转为
哪些会挂到input_handler_list上?
搞明白这个问题,然后进一步的分析input_attach_handler()匹配.
通过对drivers/input/input.c搜索, 觉得input_register_handler()这个的可能性最大,
因为list嘛,肯定有对他进行add的地方, 别的地方代码都没有add
int input_register_handler(struct input_handler *handler)
{
......//初始化h_list
INIT_LIST_HEAD(&handler->h_list);
//将node加到list尾部
list_add_tail(&handler->node, &input_handler_list);
//在注册handler的时候也对已有设备调用一次attach()
list_for_each_entry(dev, &input_dev_list, node)
input_attach_handler(dev, handler);
......
}
先看下input_handler定义,里面就有我们想找的event() filter()函数
include/linux/input.h
struct input_handler {
void *private;
void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
void (*events)(struct input_handle *handle,
const struct input_value *vals, unsigned int count);
bool (*filter)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
bool (*match)(struct input_handler *handler, struct input_dev *dev);
int (*connect)(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id);
void (*disconnect)(struct input_handle *handle);
void (*start)(struct input_handle *handle);
......
const char *name;
const struct input_device_id *id_table;
struct list_head h_list;
struct list_head node;
};
然后再进一步,我们就想要知道谁在调用input_register_handler()注册handler了.
通过搜索代码,我这里列举下
File | handler名 | 在哪个函数里注册的 |
---|---|---|
drivers/input/apm-power.c | apmpower_handler | apmpower_init() |
drivers/input/evbug.c | evbug_handler | evbug_init() |
drivers/input/input-leds.c | input_leds_handler | input_leds_init() |
drivers/input/joydev.c | joydev_handler | joydev_init() |
drivers/input/mousedev.c | mousedev_handler | mousedev_init() |
drivers/input/evdev.c | evdev_handler | evdev_init() |
drivers/tty/serial/ | kgdboc.c kgdboc_reset_handler | kgdboc_restore_input_helper() |
drivers/macintosh/mac_hid.c | mac_hid_emumouse_handler | mac_hid_start_emulation() |
net/rfkill/input.c | rfkill_handler | rfkill_handler_init() |
drivers/tty/sysrq.c | sysrq_handler | sysrq_register_handler() |
drivers/tty/vt/keyboard.c | kbd_handler | kbd_init() |
由上我们知道,在各个模块的init里,注册了所支持的handler,
用来处理几类常见的事件,如鼠标、键盘、摇杆等(其中最为基础的是evdev_handler,
它能够接收任意类型的事件,任意id的设备都可以和它匹配连接)
也就是说,最终的handler的调用函数是上面的handler中的一个。
哪我们的触屏究竟用的哪一个handler呢?这就得接下来看attach里的匹配过程了
input_attach_handler() --> input_match_device() --> input_match_device_id()
static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
{
const struct input_device_id *id;
int error;
id = input_match_device(handler, dev); //-->匹配
if (!id)
return -ENODEV;
error = handler->connect(handler, dev, id); //-->连接
......
return error;
}
bool input_match_device_id(const struct input_dev *dev,
const struct input_device_id *id)
{
if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) //Bus总线的匹配
......
if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) //Vendor匹配
......
if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) //Product匹配
......
if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
......
if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) || //匹配id的evbit和input_dev中evbit的各个位
!bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
.....) {
return false;
}
return true;
}
static const struct input_device_id *input_match_device(struct input_handler *handler,
struct input_dev *dev)
{
const struct input_device_id *id;
for (id = handler->id_table; id->flags || id->driver_info; id++) {
//进行id的一个匹配, 如果有match为空或者match成功, 返回id
if (input_match_device_id(dev, id) &&
(!handler->match || handler->match(handler, dev))) {
return id;
}
}
return NULL;
}
device id的定义如下,
struct input_device_id {
kernel_ulong_t flags;
__u16 bustype;
__u16 vendor;
__u16 product;
__u16 version;
kernel_ulong_t evbit[INPUT_DEVICE_ID_EV_MAX / BITS_PER_LONG + 1];
kernel_ulong_t keybit[INPUT_DEVICE_ID_KEY_MAX / BITS_PER_LONG + 1];
kernel_ulong_t relbit[INPUT_DEVICE_ID_REL_MAX / BITS_PER_LONG + 1];
kernel_ulong_t absbit[INPUT_DEVICE_ID_ABS_MAX / BITS_PER_LONG + 1];
......
kernel_ulong_t driver_info;
};
基实整个匹配也就是进行,总线,厂商,能力(evbit, keybit), id_table的匹配,
我们的触屏也是匹配到的evdev_handler,
我们可以再看一下evdev_handler的定义
drivers/input/evdev.c
static const struct input_device_id evdev_ids[] = {
{ .driver_info = 1 }, /* Matches all devices */
{ }, /* Terminating zero entry */
};
MODULE_DEVICE_TABLE(input, evdev_ids);
static struct input_handler evdev_handler = {
.event = evdev_event,
.events = evdev_events,
.connect = evdev_connect,
......
.minor = EVDEV_MINOR_BASE,
.name = "evdev",
.id_table = evdev_ids, //<--id_table
};
回到input_register_handler() --> input_attach_handler() --> handler->connect()
我们以handler drivers/input/evdev.c为例分析
其connect()里做的事情
- 主要为name,dev,handle,等信息填充,
- 注册handle, 将device和handler连接起来,
- 字符设备添加
static int evdev_connect(struct input_handler *handler, struct input_dev *dev,
const struct input_device_id *id)
{
......//从这个定义我们可知,input的从设备号从64开始,可为32个, 所以从设备号为64~95
minor = input_get_new_minor(EVDEV_MINOR_BASE, EVDEV_MINORS, true);
......
evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL);
......
INIT_LIST_HEAD(&evdev->client_list);
......
dev_no = minor;
......
dev_set_name(&evdev->dev, "event%d", dev_no); //<--名字为eventN
evdev->handle.dev = input_get_device(dev); //<--handle.dev
evdev->handle.name = dev_name(&evdev->dev);
evdev->handle.handler = handler; //<--注意一个是handle,一个是handler
evdev->handle.private = evdev;
evdev->dev.devt = MKDEV(INPUT_MAJOR, minor); <--//主设备号INPUT_MAJOR为13,include/uapi/linux/major.h
evdev->dev.class = &input_class; //<--- 类别为input_class, 即/sys/class/input/
evdev->dev.parent = &dev->dev;
evdev->dev.release = evdev_free;
device_initialize(&evdev->dev);
error = input_register_handle(&evdev->handle); //注册handle, 注意我们之前分析的是handler,表示键盘,摇杆等的可处理.
......
cdev_init(&evdev->cdev, &evdev_fops); //<--注意把 file_operations 和cdev->ops关联起来了.
error = cdev_device_add(&evdev->cdev, &evdev->dev); //<--cdev添加, 这个时候就可以在/dev/input/看到了
......
}
input_register_handle()所做的就是将handle句柄挂到dev和handler的list里,
当有事件来时就知道咋处理,至此也表示一个handle和dev匹配成功.
/**
.....//可以看看这个注释
* This function puts a new input handle onto device's
* and handler's lists so that events can flow through
* it once it is opened using input_open_device().
......
*/
int input_register_handle(struct input_handle *handle)
{
......
if (handler->filter)
list_add_rcu(&handle->d_node, &dev->h_list);
else
list_add_tail_rcu(&handle->d_node, &dev->h_list);
......
list_add_tail_rcu(&handle->h_node, &handler->h_list);
......
}
report和handler小结
所以到目前为至,我们知道了
当各个handler init时 --> input_register_handler() --> input_attach_handler() --> handler->connect()
或者驱动 --> probe() --> input_register_device() --> input_attach_handler --> handler->connect()
+--> input_register_handle() dev和handler关联
handler->connect()--> eg:evdev.c events() --+
+-->cdev_device_add() 注册字符设备
对于input_report_abs()上报我这也列举整个流程, 代码不再详细看了
input_report_abs() --> input_event(, EV_ABS, , ) --> input_handle_event() --> input_pass_values() --> input_to_handler() -->
handler->events()/event() --> eg:evdev.c events() --> evdev_pass_values() --> 数据填充 --> __pass_event() --> client->buffer[]
static void evdev_events(struct input_handle *handle,
const struct input_value *vals, unsigned int count)
{
......
if (client)
evdev_pass_values(client, vals, count, ev_time);
else
list_for_each_entry_rcu(client, &evdev->client_list, node)
evdev_pass_values(client, vals, count, ev_time);
......
}
static void evdev_pass_values(struct evdev_client *client,
const struct input_value *vals, unsigned int count,
ktime_t *ev_time)
{
struct evdev *evdev = client->evdev;
const struct input_value *v;
struct input_event event;
struct timespec64 ts;
......//时间
event.input_event_sec = ts.tv_sec;
event.input_event_usec = ts.tv_nsec / NSEC_PER_USEC;
......
for (v = vals; v != vals + count; v++) {
......//事件数据填充
event.type = v->type;
event.code = v->code;
event.value = v->value;
__pass_event(client, &event); //<--放到client->buffer里
}
......
}
__pass_event()将event放到client->buffer[]里
static void __pass_event(struct evdev_client *client,
const struct input_event *event)
{
client->buffer[client->head++] = *event;
client->head &= client->bufsize - 1;
if (unlikely(client->head == client->tail)) {
/*
* This effectively "drops" all unconsumed events, leaving
* EV_SYN/SYN_DROPPED plus the newest event in the queue.
*/
client->tail = (client->head - 2) & (client->bufsize - 1);
client->buffer[client->tail].input_event_sec =
event->input_event_sec;
client->buffer[client->tail].input_event_usec =
event->input_event_usec;
client->buffer[client->tail].type = EV_SYN;
client->buffer[client->tail].code = SYN_DROPPED;
client->buffer[client->tail].value = 0;
client->packet_head = client->tail;
}
if (event->type == EV_SYN && event->code == SYN_REPORT) {
client->packet_head = client->head;
kill_fasync(&client->fasync, SIGIO, POLL_IN);
}
}
数据是如何读取的?
我们从上面分析,看到数据已经放到了client->buffer[], 那读取也肯定也是从这里读,
具体分析就不讲了,我这里只列下
还记得evdev_connect()时将file_operations和dev关联起来了
cdev_init(&evdev->cdev, &evdev_fops);
evdev的file_operations定义如下:
static const struct file_operations evdev_fops = {
.owner = THIS_MODULE,
.read = evdev_read,
.write = evdev_write,
.poll = evdev_poll,
.open = evdev_open,
.release = evdev_release,
.unlocked_ioctl = evdev_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = evdev_ioctl_compat,
......
}
(evdev_open分析略过)
所以我们很容易想到读数据其实就是调用evdev_read(),
static ssize_t evdev_read(struct file *file, char __user *buffer,
size_t count, loff_t *ppos)
{
struct evdev_client *client = file->private_data;
struct evdev *evdev = client->evdev;
......
for (;;) {
......//循环读取下一个事件, 并通过input_event_to_user() --> copy_to_user()给用户空间, 这样上面就读到数据了.
while (read + input_event_size() <= count &&
evdev_fetch_next_event(client, &event)) {
if (input_event_to_user(buffer + read, &event))
......
return read;
}
static int evdev_fetch_next_event(struct evdev_client *client,
struct input_event *event)
{
int have_event;
spin_lock_irq(&client->buffer_lock);
have_event = client->packet_head != client->tail;
if (have_event) {
*event = client->buffer[client->tail++];
client->tail &= client->bufsize - 1;
}
spin_unlock_irq(&client->buffer_lock);
return have_event;
}
read数据小结
read时候 evdev_read--> 从client->buffer[]循环获取事件 evdev_fetch_next_event() --> input_event_to_user() --> copy_to_user()
涉及到的一些数据结构
struct evdev {
int open;
struct input_handle handle; -->
wait_queue_head_t wait;
struct evdev_client __rcu *grab;
struct list_head client_list;
spinlock_t client_lock; /* protects client_list */
struct mutex mutex;
struct device dev;
struct cdev cdev;
bool exist;
};
struct evdev_client {
unsigned int head;
unsigned int tail;
......
struct evdev *evdev;
struct list_head node;
unsigned int clk_type;
bool revoked;
unsigned long *evmasks[EV_CNT];
unsigned int bufsize;
struct input_event buffer[];
};
struct input_handler {
void *private;
void (*event)(....);
void (*events)(....);
......
int (*connect)(......);
void (*disconnect)(struct input_handle *handle);
void (*start)(struct input_handle *handle);
......
int minor;
const char *name;
const struct input_device_id *id_table;
struct list_head h_list;
struct list_head node; --> input_handler_list
};
struct input_handle {
......
int open;
const char *name;
struct input_dev *dev;
struct input_handler *handler;
struct list_head d_node;
struct list_head h_node;
};
他们可简单用如下图表示, 即有两个列表, input_handler_list和input_dev_list
分别是所有可用的handler和input dev,
他们之间靠input_handle连在一起.
input_handler_list[hander1|hander2|...] input_dev_list[dev1|dev2|...]
^ ^ ^ ^
| | | |
| | | |
[handle1{handler|dev}]--| ----------------------------------+ |
[handle2{handler|dev}]---------------------------------+
[handle..{handler|dev}]略...
调试相关
对于android可用命令
sendevent/getevent
发送或获取event事件
也可查看一些节点获得信息
/proc/bus/input/
/sys/class/input/
/dev/input/
总结
所以总的来说, 内容有如下
- 按照linux设备架构,驱动模型实现driver,
-
当各个handler init或者驱动注册input device时,会进行handler的匹配,
匹配成功后调用handler的connect()通过handle进行device handler的关联,
并注册字符设备当各个handler init时 --> input_register_handler() --> input_attach_handler() --> handler->connect() 或者驱动 --> probe() --> input_register_device() --> input_attach_handler --> handler->connect() +--> input_register_handle() dev和handler关联 handler->connect()--> eg:evdev.c events() --+ +-->cdev_device_add() 注册字符设备
-
当点击触屏后, 进到中断处理,然后读取数据,再report,并存到client的buffer[]里
input_report_abs() --> input_event(, EV_ABS, , ) --> input_handle_event() --> input_pass_values() --> input_to_handler() --> handler->events()/event() --> eg:evdev.c events() --> evdev_pass_values() --> 数据填充 --> __pass_event() --> client->buffer[]
-
上层用户空调read时(open我们略过了), 只要有数据,不断从client->buffer[]读取并通过copy_to_user()拷到用户空间, 所以上层就拿到数据了.
read时候...--> evdev_read--> 从client->buffer[]循环获取事件 evdev_fetch_next_event() --> input_event_to_user() --> copy_to_user()
-
大体流向
userpace open()/read() /dev/input/event* ---------------------------------------- kernel ↑ input handler evdev.c ↑ input core input.c ↑ device driver