以前写的一个Design Pattern的文章

阅读更多
Design Pattern Practice
1.序
本文从一个简单的多列排序的例子入手,由浅入深地讲解Design Pattern(设计模式)的目的、分析和实践。
文中的例子用到Compositor Pattern和Proxy Pattern。
同时,文中的例子也提供了一类问题(条件组合问题)的解决方案。

2.问题的引入
Design Pattern(设计模式)的目标是,把共通问题中的不变部分和变化部分分离出来。不变的部分,就构成了Design Pattern(设计模式)。这一点和Framework(框架)有些象。
下面举个排序的例子,说明如何抽取问题中的不变部分。
假设一个Java类Record有field1,field2,field3等字段。
public class Record{
	public int field1;
	public long field2;
	public double filed3;
};


我们还有一个Record对象的数组Record[] records。我们需要对这个数组按照不同的条件排序。
首先,按照field1的大小从小到大进行升序排序。
排序函数如下:
void sort(Record[] records){
	for(int i =….){
		for(int j=….){
			if(records[i].field1 > records[j].field1)
				// swap records[i] and records[j]
		}
	}
}


其次,按照field2的大小从小到大进行升序排序。
void sort(Record[] records){
	for(int i =….){
		for(int j=….){
			if(records[i].field2 > records[j].field2)
				// swap records[i] and records[j]
		}
	}
}


再次,按照field3的大小从小到大进行升序排序。
这种要求太多了,我们写了太多的重复代码。我们可以看到,问题的变化部分,只有判断条件部分(黑体的if条件判断语句)。
我们可以引入一个Comparator接口,把这个变化的部分抽取出来。
public interface Comparator(){
	public boolean greaterThan(Record a, Record b);
};
sort函数就可以这样写(把判断条件作为参数):
void sort(Record[] records, Comparator compare){
	for(int i =….){
		for(int j=….){
			if(compare.greaterThen(records[i], records[j]))
				// swap records[i] and records[j]
		}
	}
}


这样,对应第一个要求——对records数组按照field1的大小排序。
我们可以做一个实现Comparator接口的CompareByField1类。
public class CompareByField1 implements Comparator{
public boolean greaterThan(Record a, Record b){
	if(a.filed1 > b.filed1){
		return ture;
	}
	return false;
}
}


sort函数的调用为:sort(records, new CompareByField1());

这样,对应第一个要求——对records数组按照field2的大小排序。
我们可以做一个实现Comparator接口的CompareByField2类。

public class CompareByField2 implements Comparator{
public boolean greaterThan(Record a, Record b){
	if(a.filed2 > b.filed2){
		return ture;
	}
	return false;
}
}

sort函数的调用为:sort(records, new CompareByField2());
按照C++ STL的叫法,这里的sort称为算法(Algorithm),records称为容器(集合),Comparator称为函数对象(Function Object)。

JDK的java.util.Collections类的sort方法和java.util.Comparator接口就是按照这样的思路设计的。下面我们来看看如何应用sort和Comparator解决多列排序问题。

3.多列排序问题
3.1排序条件的数量
我们知道,SQL语句能够实现强大的排序功能,能够按照不同字段的排列进行排序,也能够按照升序,降序排序。比如下面的语句。
order by field1 asc, field2 asc, field3 desc。

这个排序条件按照field1的升序,field2的升序,field3的降序排序。
注意,排在前面的字段具有较高的优先级。
比如,两条纪录A和B,满足如下条件:(1)A.field1 > B.field1,(2)A.field2 < B.field2。
这时如果按照order by field1, field2语句排序,那么 A > B。
如果上述条件中的(1)A.field1 > B.field1变化为A.field1 == B.field1。这时,条件(2)就会起作用。这时,A < B。

我们来看看在Java中如何实现这种灵活而强大的排序。
我们还是以上一节的Record类为例。Record类有3个字段,我们来看一看,有多少种可能的排序条件。
(1)按field1排序。(2)按field2排序。(3)按field3排序。(4)按field1,field2排序。(5)按field1升序,按field2降序排序…...

各种排序条件的排列组合,大概共有30种。而且,随着字段个数的增长,排序条件的个数呈幂级数的增长。
按照上一节的sort和Comparator方法,如果我们需要达到按照任意条件进行排序的目的,那么我们需要为每一个排序条件提供一个Comparator,我们需要30个Comparator类。:-)
当然,我们不会这么做,我们能够进一步提取这个问题中的相同重复部分,优化我们的解决方案。

3.2 问题分析
我们来分析这个问题中变化的部分和不变的部分。
上面所有的排序条件中,不变的部分有3部分:(1)A.field1和B.field1的比较,(2)A.field2和B.field2的比较,(3)A.field3和B.field3的比较;变化的部分有两部分,(1)这三种比较条件的任意组合排列,(2)升序和降序。
根据这段分析,我们引入两个类,ReverseComparator类和CompositeComparator类。
CompositeComparator类用来解决字段的组合排列问题。
ReverseComparator类用来解决字段的升序、降序问题。

3.3 ReverseComparator类的代码

import java.util.Comparator;

public class ReverseComparator implements Comparator{
  /** the original comparator*/
  private Comparator originalComparator = null;

  /** constructor takes a comparator as parameter */
  public ReverseComparator(Comparator comparator){
    originalComparator = comparator;
  }

  /** reverse the result of the original comparator */
  public int compare(Object o1, Object o2){
    return - originalComparator.compare(o1, o2);
  }
}


3.4 CompositeComparator类的代码

import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.LinkedList;

public class CompositeComparator implements Comparator{
  /** in the condition list, comparators' priority decrease from head to tail */
  private List comparators = new LinkedList();

  /** get the comparators, you can manipulate it as need.*/
  public List getComparators(){
    return comparators;
  }

  /** add a batch of comparators to the condition list */
  public void addComparators(Comparator[] comparatorArray){
    if(comparatorArray == null){
      return;
    }

    for(int i = 0; i < comparatorArray.length; i++){
      comparators.add(comparatorArray[i]);
    }
  }

  /** compare by the priority */
  public int compare(Object o1, Object o2){
    for(Iterator iterator = comparators.iterator(); iterator.hasNext();){
      Comparator comparator = (Comparator)iterator.next();

      int result = comparator.compare(o1, o2);

      if(result != 0){
        return result;
      }
    }

    return 0;
  }
}


3.5 Comparator的组合应用
这一节讲述上面两个类的用法。
对应前面的排序问题,我们只需要3个Comparator类:
(1)Field1Comaprator;
(2)Field2Comaprator;
(3)Field3Comaprator。

下面举例说明,如何组合这些Comparator实现不同的排序条件。
(1)order by field1, field2

 CompoiComparator myComparator = new CompoiComparator();
 myComparator. addComparators(
new Comparator[]{new Field1Comaprator (),  new Field2Comaprator ()};
);

// records is a list of Record
 Collections.sort(records,  myComparator);


(2)order by field1 desc, field2

 CompoiComparator myComparator = new CompoiComparator();
 myComparator. addComparators(
new Comparator[]{
new ReverseComparator(new Field1Comaprator ()),  
new Field2Comaprator ()};
);

// records is a list of Record
 Collections.sort(records,  myComparator);


这里提供的ReverseComparator类和CompositeComparator类都采用了Decorator Pattern。
CompositeComparator类同时也是Composite Pattern。

4.过滤条件的排列组合
(多谢shinwell指正,我改正了后面的代码)

过滤条件问题也属于条件组合问题的范畴。比如JDK提供的java.io.File类提供了一个文件过滤方法listFile(FileFilter),用户可以定制不同的FileFilter,实现不同的过滤条件,比如文件时间在某个范围内;文件后缀名,文件名符合某种模式;是目录,还是文件,等等。
同样,我们可以应用上述的解决方法,实现灵活的过滤条件组合——用一个CompositeFilter类任意组合过滤条件,用一个ReverseFilter类作为排除条件。
4.1 CompositeFilter类的代码

import java.io.FileFilter;
import java.io.File;

import java.util.Iterator;
import java.util.List;
import java.util.LinkedList;

public class CompositeFilter implements FileFilter {

  /** in the filter list, every condition should be met. */
  private List filters = new LinkedList();

  /** get the filters, you can manipulate it as need.*/
  public List getFilters(){
    return filters;
  }

  /** add a batch of filters to the condition list */
  public void addFilters(FileFilter[] filterArray){
    if(filterArray == null){
      return;
    }

    for(int i = 0; i < filterArray.length; i++){
      filters.add(filterArray[i]);
    }
  }

  /** must meet all the filter condition */
  public boolean accept(File pathname) {
    for(Iterator iterator = filters.iterator(); iterator.hasNext();){
      FileFilter filter = (FileFilter)iterator.next();

      boolean result = filter.accept(pathname);

      // if any condition can not be met, return false.
      if(result == false){
        return false;
      }
    }

    // all conditions are met, return true.
    return true;
  }
}


4.2 ReverseFilter类的代码
import java.io.FileFilter;
import java.io.File;

public class ReverseFilter implements FileFilter {
  /** the original filter*/
  private FileFilter originalFilter = null;

  /** constructor takes a filter as parameter */
  public ReverseFilter(FileFilter filter){
    originalFilter = filter;
  }

  /** must meet all the filter condition */
  public boolean accept(File pathname) {
      return !originalFilter.accept(pathname);
  }
}


5.总结
本文讲述了Design Pattern的分析和实践,并阐述了一类条件组合问题的解决思路。

Enjoy it. :-)
Thanks.

你可能感兴趣的:(设计模式,LISP,OO,FP,J#)