Java性能优化之数据结构实例代码

―举例(学生排课)―

正常思路的处理方法和优化过后的处理方法:

比如说给学生排课。学生和课程是一个多对多的关系。

Java性能优化之数据结构实例代码_第1张图片

按照正常的逻辑 应该有一个关联表来维护 两者之间的关系。

Java性能优化之数据结构实例代码_第2张图片

现在,添加一个约束条件用于校验。如:张三上学期学过的课程,在排课的时候不应该再排这种课程。

Java性能优化之数据结构实例代码_第3张图片

所以需要出现一个约束表(即:历史成绩表)。

Java性能优化之数据结构实例代码_第4张图片

即:学生选课表,需要学生成绩表作为约束。

―方案一:正常处理方式―

当一个学生进行再次选课的时候。需要查询学生选课表看是否已经存在。

即有如下校验:

//查询 学生code和课程code分别为 A 和 B的数据是否存在 
 
//list集合中存放 学生选课记录全部的数据 
List ListStudentRecord=service.findAll();   
//查询数据,看是否已经存在 
StudentRecordEntity enSr=ListStudentRecord.find(s=>s.学生Code==A && s.课程Code==B); 
If(enSr==null){ 
  //学生没有选该课程 
  //.... 
}else{ 
  //学生已经选过该课程 
  //.... 
} 

对于上面这种代码的写法,非常的简练。而且也非常易懂。

首先,假设有5000个学生,100门课程。那么对于学生选课的数据集中,数据量将是5000*100.数据量会是十万级别的数量级。

在十万条数据中,查询学生=A课程=B的一条记录。执行的效率会很低。因为find方法的查询也就是where查询,即通过遍历数据集合来查找。

所以,使用上面的代码。在数据量逐渐增长的过程中,程序的执行效率会大幅度下降。

ps:数据量增长,在该例子中并不太适合。例子可能不太恰当。总之,大概就是这个意思。)

―方案二:使用内存进行优化效率―

这种做法,需要消耗内存。或者说把校验的工作向前做(数据的初始化,在部署系统的过程中进行)。即:在页面加载的时候数据只调用提供的public方法进行校验。

//学生Code 到  数组索引 
Private Dictionary _DicStudentCodeToArrayIndex;
//课程Code 到  数据索引 
Private Dictionary _DicCourseCodeToArrayIndex;
//所有学生 
List ListStudent=service.findAllStudent();
//所有课程 
List ListCourse=service.findAllCourse();
//所有 学生选课记录 
List ListStudentRecord=service.finAll();
Private int[,] _ConnStudentRecord=new int[ListStudent.count,ListCourse.count];
//构造 学生、课程的 数组 用于快速查找字典索引 
Private void GenerateDic(){
	For(int i=0;
	i返回1 表示存在。返回0表示不存在 
Public void VerifyRecordByStudentCodeAndCourseCode(String pStudentCode,String pCourseCode){
int x=_DicStudentCodeToArrayIndex[pStudentCode];
int y=_DicCourseCodeToArrayIndex[pCourseCode];
Return ConnStudentRecord[x,y];
}

―性能分析―

分析一下第二种方案的表象。

1、方法很多。

2、使用的变量很多。

首先要说一下。该优化的目的,是提高学生在选课的时候,所出现的卡顿现象(校验数据量大)。

分别对以上两种方案进行分析:

假设学生为N,课程为M

第一种方案:

时间复杂度很容易计算第一种方案最小为O(NM)

第二种方案:

1、代码多。但是给用户提供的只有一个VerifyRecordByStudentCodeAndCourseCode方法。

2、变量多,因为该方案就是要使用内存提高效率的。

这个方法执行流程:1、在Dictionary中使用Code找Index2、使用Index查询数组。

第一步中,Dictionary中查询是使用的Hash查找算法。时间复杂度为O(lgN)时间比较快。第二步,时间复杂度为O(1),因为数组是连续的使用索引会直接查找对应的地址。

所以,使用第二种方案进行校验,第二种方案时间复杂度为O(lgN+lgM)

―总结―

通过上面的分析,可以看出,内存的付出是可以提高程序的执行效率的。以上只是一个例子,优化的好坏取决于使用的数据结构。

以上就是本文关于Java性能优化之数据结构实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

你可能感兴趣的:(Java性能优化之数据结构实例代码)