elasticsearch kibana简单查询讲解

一、简单的CRUD操作

1、添加

PUT /index/type/id
{
 "json数据"
}

2、查询

GET /index/type/id

3、修改

POST /index/type/id/_update
{
 "doc": {
  "FIELD": "值"
 }
}

4、删除

DELETE /index/type/id

二、搜索

搜索可以分成六大类

  • 1、query string search
  • 2、query DSL
  • 3、query filter
  • 4、full-text search
  • 5、phrase search
  • 6、highlight search

1、query string search

搜索全部:GET supplier/user/_search

{
 "took": 2,
 "timed_out": false,
 "_shards": {
  "total": 5,
  "successful": 5,
  "failed": 0
 },
 "hits": {
  "total": 3,
  "max_score": 1,
  "hits": [
   {
    "_index": "supplier",
    "_type": "user",
    "_id": "2",
    "_score": 1,
    "_source": {
     "name": "lisi",
     "age": 26,
     "address": "bei jing tong zhou",
     "price": 10000,
     "dept": [
      "kaifabu"
     ]
    }
   },
   {
    "_index": "supplier",
    "_type": "user",
    "_id": "1",
    "_score": 1,
    "_source": {
     "name": "zhangsan",
     "age": 30,
     "address": "bei jing chang chun jie",
     "price": 15000,
     "dept": [
      "kaifabu",
      "yanfabu"
     ]
    }
   },
   {
    "_index": "supplier",
    "_type": "user",
    "_id": "3",
    "_score": 1,
    "_source": {
     "name": "wangwu",
     "age": 26,
     "address": "bei jing tong zhou yun he ming zhu",
     "price": 13000,
     "dept": [
      "kaifabu"
     ]
    }
   }
  ]
 }
}

took:耗费了几毫秒

timed_out:是否超时,这里是没有

_shards:数据拆成了5个分片,所以对于搜索请求,会打到所有的primary shard(或者是它的某个replica shard也可以)

hits.total:查询结果的数量,3个document

hits.max_score:score的含义,就是document对于一个search的相关度的匹配分数,越相关,就越匹配,分数也高

hits.hits:包含了匹配搜索的document的详细数据

2、query DSL

查询所有

GET supplier/user/_search
{
 "query": { "match_all": {} }
}

查询全部并且排序

GET suppluer/user/_search
{
 "query": {
  "match_all": {}
 }
 , "sort": [
  {
   "price": {
    "order": "desc"
   }
  }
 ]
}

分页查询

GET supplier/user/_search
{
 "query": { "match_all": {} },
 "from": 1,
 "size": 1
}

指定要查询显示的field

GET supplier/user/_search
{
 "query": { "match_all": {} },
 "_source": ["name", "price"]
}

3、query filter

搜索name为‘lisi'并且price大于1500的

GET supplier/user/_search
{
  "query" : {
    "bool" : {
      "must" : {
        "match" : {
          "name" : "lisi" 
        }
      },
      "filter" : {
        "range" : {
          "price" : { "gt" : 1500} 
        }
      }
    }
  }
}

4、full-text search(全文检索)

address这个字段,会先被拆解,建立倒排索引

GET /ecommerce/product/_search
{
  "query" : {
    "match" : {
      "address" : "bei jing"
    }
  }
}

5、phrase search(短语搜索)

跟全文检索相对应,相反,全文检索会将输入的搜索串拆解开来,去倒排索引里面去一一匹配,只要能匹配上任意一个拆解后的单词,就可以作为结果返回

phrase search,要求输入的搜索串,必须在指定的字段文本中,完全包含一模一样的,才可以算匹配,才能作为结果返回

GET /ecommerce/product/_search
{
  "query" : {
    "match_phrase" : {
      "address" : "bei jing"
    }
  }
}

6、highlight search(高亮搜索结果)

GET /ecommerce/product/_search
{
  "query" : {
    "match" : {
      "address" : "bei jing"
    }
  },
  "highlight": {
    "fields" : {
      "address" : {}
    }
  }
}

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对脚本之家的支持。如果你想了解更多相关内容请查看下面相关链接

你可能感兴趣的:(elasticsearch kibana简单查询讲解)