Java数据结构及算法实例:汉诺塔问题 Hanoi

/** 
 * 汉诺塔大学的时候就学过,但是根本没搞明白,唯一知道的就是要用递归的方法来求解。 
 * 问题描述: 
 * 有三根杆子A,B,C。A杆上有N个(N>1)穿孔圆盘,盘的尺寸由下到上依次变小。 
 * 要求按下列规则将所有圆盘移至C杆: 
 * 1.每次只能移动一个圆盘; 
 * 2.大盘不能叠在小盘上面。 
 * 提示:可将圆盘临时置于B杆,也可将从A杆移出的圆盘重新移回A杆, 
 * 但都必须尊循上述两条规则。 
 * 问:如何移?最少要移动多少次? 
 * 解决方法: 
 * 假设只有2个盘子,柱子分别是A, B, C柱。那么只需要三步就可以把他们从A柱移到C柱, 
 * 这三步是A->B, A->C, B->C。 
 * 如果盘子数n超过2呢,我们就可以把这些盘子看成由最下面的那个盘子和 上面n-1个盘子 两部分, 
 * 这两部分同样可以用上面的三步实现移动。 
 * 也就是说我们可以通过递归地调用上面的步骤实现将所有n个盘子从A柱移动到C柱。 
 */ 
package al; 
public class Hanoi { 
   
  public static void main(String[] args) { 
     
    Hanoi hanoi = new Hanoi(); 
    hanoi.move(3, 'A', 'B', 'C'); 
  } 
   
  /** 
   * @author 
   * @param n 盘子数目 
   * @param from 起始柱子 
   * @param temp 中间柱子 
   * @param to 目标柱子 
   */ 
  public void move(int n, char from, char temp, char to) { 
    if(n == 1) { 
      System.out.println("Move 1 plate from " + from + " to " + to); 
    } else { 
      move(n-1, from, to, temp); 
      move(1, from, temp, to); 
      move(n-1, temp, from, to); 
    } 
  } 
} 

你可能感兴趣的:(Java数据结构及算法实例:汉诺塔问题 Hanoi)