spring boot整合spring-kafka实现发送接收消息实例代码

前言

由于我们的新项目使用的是spring-boot,而又要同步新项目中建的数据到老的系统当中.原来已经有一部分的同步代码,使用的是kafka. 其实只是做数据的同步,我觉得选MQ没必要使用kafka.首先数据量不大,其实搞kafka又要搞集群,ZK.只是用做一些简单数据同步的话,有点大材小用.

没办法,咱只是个打工的,领导让搞就搞吧.刚开始的时候发现有一个spring-integration-kafka,描述中说是基于spring-kafka做了一次重写.但是我看了官方文档.实在是搞的有点头大.功能一直没实现.文档写的也不是很漂亮,也可能是刚起步,有很多的问题.我这里只能放弃了,使用了spring-kafka.

实现方法

pom.xml文件如下



 4.0.0
 
 org.linuxsogood.sync
 linuxsogood-sync
 1.0.0-SNAPSHOT
 
 
  org.springframework.boot
  spring-boot-starter-parent
  1.4.0.RELEASE
 
 
 
  1.8
  
  3.3.1
  1.2.4
  3.3.6
  4.1.1
 
 
 
  
   org.springframework.boot
   spring-boot-starter-web
  
  
   org.springframework.boot
   spring-boot-starter-jdbc
  
  
   org.springframework.boot
   spring-boot-starter-aop
  
  
   org.springframework.boot
   spring-boot-starter-freemarker
  
  
  
   org.springframework.kafka
   spring-kafka
   1.1.0.RELEASE
  
  
  
   junit
   junit
   4.12
   test
  
  
   org.assertj
   assertj-core
   3.5.2
  
  
   org.hamcrest
   hamcrest-all
   1.3
   test
  
  
   org.mockito
   mockito-all
   1.9.5
   test
  
  
   org.springframework
   spring-test
   4.2.3.RELEASE
   test
  
  
   org.springframework.boot
   spring-boot-starter-test
   test
  
  
   mysql
   mysql-connector-java
  
  
   com.microsoft.sqlserver
   sqljdbc4
   4.0.0
  
  
   com.alibaba
   druid
   1.0.11
  
 
  
  
   org.mybatis
   mybatis
   ${mybatis.version}
  
  
   org.mybatis
   mybatis-spring
   ${mybatis.spring.version}
  
  
  
  
   org.mybatis.generator
   mybatis-generator-core
   1.3.2
   compile
   true
  
  
  
   com.github.pagehelper
   pagehelper
   ${pagehelper.version}
  
  
  
   tk.mybatis
   mapper
   ${mapper.version}
  
  
   com.alibaba
   fastjson
   1.2.17
  
 
 
  
   repo.spring.io.milestone
   Spring Framework Maven Milestone Repository
   https://repo.spring.io/libs-milestone
  
 
 
  mybatis_generator
  
   
    org.mybatis.generator
    mybatis-generator-maven-plugin
    1.3.2
    
     true
     true
    
   
   
    org.springframework.boot
    spring-boot-maven-plugin
    
     org.linuxsogood.sync.Starter
    
   
  
 

orm层使用了MyBatis,又使用了通用Mapper和分页插件.

kafka消费端配置

import org.linuxsogood.sync.listener.Listener;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;
 
import java.util.HashMap;
import java.util.Map;
 
@Configuration
@EnableKafka
public class KafkaConsumerConfig {
 
 @Value("${kafka.broker.address}")
 private String brokerAddress;
 
 @Bean
 KafkaListenerContainerFactory> kafkaListenerContainerFactory() {
 ConcurrentKafkaListenerContainerFactory factory = new ConcurrentKafkaListenerContainerFactory<>();
 factory.setConsumerFactory(consumerFactory());
 factory.setConcurrency(3);
 factory.getContainerProperties().setPollTimeout(3000);
 return factory;
 }
 
 @Bean
 public ConsumerFactory consumerFactory() {
 return new DefaultKafkaConsumerFactory<>(consumerConfigs());
 }
 
 @Bean
 public Map consumerConfigs() {
 Map propsMap = new HashMap<>();
 propsMap.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddress);
 propsMap.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);
 propsMap.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "100");
 propsMap.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "15000");
 propsMap.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
 propsMap.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
 propsMap.put(ConsumerConfig.GROUP_ID_CONFIG, "firehome-group");
 propsMap.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
 return propsMap;
 }
 
 @Bean
 public Listener listener() {
 return new Listener();
 }
}

生产者的配置.

import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
 
import java.util.HashMap;
import java.util.Map;
 
@Configuration
@EnableKafka
public class KafkaProducerConfig {
 
 @Value("${kafka.broker.address}")
 private String brokerAddress;
 
 @Bean
 public ProducerFactory producerFactory() {
 return new DefaultKafkaProducerFactory<>(producerConfigs());
 }
 
 @Bean
 public Map producerConfigs() {
 Map props = new HashMap<>();
 props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddress);
 props.put(ProducerConfig.RETRIES_CONFIG, 0);
 props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
 props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
 props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
 props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
 props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
 return props;
 }
 
 @Bean
 public KafkaTemplate kafkaTemplate() {
 return new KafkaTemplate(producerFactory());
 }
}

监听,监听里面,写的就是业务逻辑了,从kafka里面得到数据后,具体怎么去处理. 如果需要开启kafka处理消息的广播模式,多个监听要监听不同的group,即方法上的注解@KafkaListener里的group一定要不一样.如果多个监听里的group写的一样,就会造成只有一个监听能处理其中的消息,另外监听就不能处理消息了.也即是kafka的分布式消息处理方式.

在同一个group里的监听,共同处理接收到的消息,会根据一定的算法来处理.如果不在一个组,但是监听的是同一个topic的话,就会形成广播模式

import com.alibaba.fastjson.JSON;
import org.linuxsogood.qilian.enums.CupMessageType;
import org.linuxsogood.qilian.kafka.MessageWrapper;
import org.linuxsogood.qilian.model.store.Store;
import org.linuxsogood.sync.mapper.StoreMapper;
import org.linuxsogood.sync.model.StoreExample;
import org.apache.commons.lang3.StringUtils;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;

import java.util.List;
import java.util.Optional;

public class Listener {

 private static final Logger LOGGER = LoggerFactory.getLogger(Listener.class);

 @Autowired
 private StoreMapper storeMapper;

 /**
  * 监听kafka消息,如果有消息则消费,同步数据到新烽火的库
  * @param record 消息实体bean
  */
 @KafkaListener(topics = "linuxsogood-topic", group = "sync-group")
 public void listen(ConsumerRecord record) {
  Optional kafkaMessage = Optional.ofNullable(record.value());
  if (kafkaMessage.isPresent()) {
   Object message = kafkaMessage.get();
   try {
    MessageWrapper messageWrapper = JSON.parseObject(message.toString(), MessageWrapper.class);
    CupMessageType type = messageWrapper.getType();
    //判断消息的数据类型,不同的数据入不同的表
    if (CupMessageType.STORE == type) {
     proceedStore(messageWrapper);
    }
   } catch (Exception e) {
    LOGGER.error("将接收到的消息保存到数据库时异常, 消息:{}, 异常:{}",message.toString(),e);
   }
  }
 }

 /**
  * 消息是店铺类型,店铺消息处理入库
  * @param messageWrapper 从kafka中得到的消息
  */
 private void proceedStore(MessageWrapper messageWrapper) {
  Object data = messageWrapper.getData();
  Store cupStore = JSON.parseObject(data.toString(), Store.class);
  StoreExample storeExample = new StoreExample();
  String storeName = StringUtils.isBlank(cupStore.getStoreOldName()) ? cupStore.getStoreName() : cupStore.getStoreOldName();
  storeExample.createCriteria().andStoreNameEqualTo(storeName);
  List stores = storeMapper.selectByExample(storeExample);
  org.linuxsogood.sync.model.Store convertStore = new org.linuxsogood.sync.model.Store();
  org.linuxsogood.sync.model.Store store = convertStore.convert(cupStore);
  //如果查询不到记录则新增
  if (stores.size() == 0) {
   storeMapper.insert(store);
  } else {
   store.setStoreId(stores.get(0).getStoreId());
   storeMapper.updateByPrimaryKey(store);
  }
 }

}

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。

你可能感兴趣的:(spring boot整合spring-kafka实现发送接收消息实例代码)